Prediction of performance of a TiAlN coating in profile turning using a grey box approach (PreProCoat)

使用灰盒方法 (PreProCoat) 预测 TiAlN 涂层在仿形车削中的性能

基本信息

项目摘要

In the PreProCoat project, the development and use of an approach based on greybox models is being pursued, with which the application behavior of a TiAlN/TiN tool coating can be predicted for the case of the dry machining process of profile grooving in quenched and tempered steel C45. With the grooving profile, the load conditions in the contact zone between the outgoing chip and the coating change and thus the locally distributed thermo-mechanical load spectrum. In experimental machining investigations, first correlations between machining parameters as well as tool properties and criteria for the evaluation of the process course, the coating condition and the machining quality are worked out. In an analogy test, individual areas of the contact zone are investigated with regard to the local distribution of temperature and cutting forces and correlated with the machining parameters. The tests are statistically validated up to the end of life of the coating system. Process intermittent wear measurements as well as downstream coating condition analyses accompany the experimental phase. The results obtained will also serve to validate an FE chip formation model to be subsequently created, which can be used to supplement and extend the experimental investigations by numerical means. In particular, the FE model enables the local and temporal derivation of the thermo-mechanical stress collectives in the coating. The required analytical submodels for friction and material behavior are taken from the literature. Tribomechanical analyses on contact pairs of AlTiN/TiN-coated test specimens and C45 material samples provide the required specific friction parameters. With the aid of damage models, the local residual stresses in the coating system are identified from the thermo-mechanical load collectives, among other things, and a possible coating failure is derived from this. The calculations with the FE stress model are carried out iteratively along the coating service life, whereby the submodels for friction and material behavior as well as the geometry model of the tool are adjusted on the basis of the analytical condition determination before each iteration step. Since a purely analytical approach is likely to result in fuzzy prediction, AI/ML approaches are pursued with which experimentally obtained analysis data can be correlated with corresponding influencing variables. The coupling of the resulting data-driven models with the already implemented analytical models is finally done on the basis of a greybox structure to be created.
在PreProCoat项目中,正在开发和使用一种基于灰箱模型的方法,通过该方法,可以预测淬火和回火钢C45的轮廓切槽干加工过程中TiAlN/TiN刀具涂层的应用行为。在切槽轮廓的情况下,输出切屑和涂层之间的接触区域中的载荷条件改变,并且因此局部分布的热机械载荷谱改变。在实验加工研究中,首先制定出加工参数以及刀具性能与工艺过程、涂层条件和加工质量评价标准之间的相关性。在模拟试验中,接触区的各个区域的温度和切削力的局部分布方面进行了调查,并与加工参数。在涂层系统寿命结束之前,对测试进行统计学验证。过程间歇磨损测量以及下游涂层条件分析伴随着实验阶段。所获得的结果也将用于验证随后创建的FE切屑形成模型,该模型可用于通过数值手段补充和扩展实验研究。特别是,有限元模型使局部和时间推导的热机械应力集体在涂层中。摩擦和材料行为所需的分析子模型取自文献。对AlTiN/TiN涂层试样和C45材料样品的接触对进行摩擦力学分析,提供所需的特定摩擦参数。借助于损伤模型,涂层系统中的局部残余应力从热-机械载荷集合中识别,并且由此导出可能的涂层失效。利用FE应力模型的计算沿着涂层使用寿命迭代地进行,其中,在每个迭代步骤之前,基于分析条件确定来调整用于摩擦和材料行为的子模型以及工具的几何模型。由于纯分析方法可能导致模糊预测,因此采用AI/ML方法,通过该方法可以将实验获得的分析数据与相应的影响变量相关联。最终,在要创建的灰盒结构的基础上,完成所产生的数据驱动模型与已实现的分析模型的耦合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Dienwiebel其他文献

Professor Dr. Martin Dienwiebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Dienwiebel', 18)}}的其他基金

Applied Nanotribology
应用纳米摩擦学
  • 批准号:
    426481120
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants
Understanding the third body formation during sliding friction utilizing multilayer model alloys
利用多层模型合金了解滑动摩擦过程中第三体的形成
  • 批准号:
    263659068
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Applied Nanotribology
应用纳米摩擦学
  • 批准号:
    263522109
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Dynamics of sliding metal surfaces as case study for complex systems
滑动金属表面动力学作为复杂系统的案例研究
  • 批准号:
    53244514
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups

相似国自然基金

CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
  • 批准号:
    50806049
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Web服务质量(QoS)控制的策略、模型及其性能评价研究
  • 批准号:
    60373013
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
High Performance Reefable Wingsail Rig Design and Pre-deployment Trial
高性能可折叠翼帆装置设计和预部署试验
  • 批准号:
    10092779
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
  • 批准号:
    10093235
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Electrolyte design for high-performance, sustainable sodium batteries
高性能、可持续钠电池的电解质设计
  • 批准号:
    DE240100480
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
High-performance thin film porous pyroelectric materials and composites for thermal sensing and harvesting
用于热传感和收集的高性能薄膜多孔热释电材料和复合材料
  • 批准号:
    EP/Y017412/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了