Theoretical Study on Elastic Wave Propagation in Inhomogeneous Media.

非均匀介质中弹性波传播的理论研究。

基本信息

  • 批准号:
    61550065
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1986
  • 资助国家:
    日本
  • 起止时间:
    1986 至 1988
  • 项目状态:
    已结题

项目摘要

It is the purpose of our study to analyze shutting of wave energy in low velocity zone in inhomogeneous elastic media. We planed the two steps; 1)develope the analytical method for shutting energy in low velocity zone and analyze its mechanism based on the theory of elastic waves. 2) clarify the effect of material property on the shutting energy. The results are summerized as follows; 1) analytical techniques are developed for the case of three waves, P, SV and SH-waves.(1) Non-Steady Response for longitudinally Shear Force in Inhomogeneous Elastic Half Space(Ist Report; Long-Time solution, 2nd Report; Short-Time Solution). (2)Plane P and SV-Waves in Inhomogeneous Elastic Meria with Harmonic variation of Density. (3) Axial Shear Wave in Inhomogeneous Elastic Media. (3) Axial Shear Wave in Inhomogeneous Elastic Media. An application of the developed technique is made for (4) A Study on Timing Belt(Theoratical Analysis for Forced Transverse Vibration of Timing Belt with Parametric Excitation). (5) A Reciprocating Antiplane Shear Load with Harmonic Vibration on the surface of an Elastic Half Space.The effect of material property is analyzed by using piecewise contineous elestic media. That is for laminate composites. (1) Dynamic Interfacial Stress in Bonded Two-Dissimilar Elastic Solids to a Moving Dislocation (lst Report; Steady-State Response to a Screw Dislocation, 2nd Report; Steady-State Response to a Edge Dislocation). (2) Transient Response of elastic Composites to an Interfacial Dislocation Moving along the Interface (lst Report; Antiplane Deformation, 2nd Report; Torsional Deformation).All of the above papers have been published or have been submitted in the research journals. We shall continue and develope our research project hereafter, and wish to express thanks for the support of Grand-in-Aid for Scientific reseach, through the three years.
本文研究的目的是分析非均匀弹性介质中波能在低速区的闭合问题。我们计划了两个步骤; 1)基于弹性波理论,建立了低速区能量封闭的分析方法,并分析了低速区能量封闭的机理。2)阐明了材料性能对关断能量的影响。主要结果如下:1)建立了P波、SV波和SH波三种波情况下的解析方法。(1)非均匀弹性半空间中纵向剪切力的非稳态响应(第一份报告;长期解;第二份报告;短期解)。(2)非均匀弹性梅里亚中的平面P波和SV波。(3)非均匀弹性介质中的轴向剪切波。(3)非均匀弹性介质中的轴向剪切波。所发展的技术已应用于(4)同步带的研究(参数激励下同步带强迫横向振动的理论分析)。(5)弹性半空间表面受往复反平面剪切载荷的简谐振动,采用分段连续弹性介质分析了材料特性的影响。这是用于层压复合材料。(1)两种不同弹性固体对运动位错的动态界面应力(第一次报告;对螺型位错的稳态响应,第二次报告;对刃型位错的稳态响应)。(2)弹性复合材料对沿界面沿着移动的界面位错的瞬态响应(第一次报告;反平面变形,第二次报告;扭转变形)。我们将继续和发展我们的研究项目以后,并希望表示感谢的支持,在资助科学研究,通过三年。

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazumi Watanabe: "Plane P and SV-waves in Inhomogeneous Elastic Media with Harmonic Variation of Density." JSME International Paper No. 2006A.
Kazumi Watanabe:“具有密度谐波变化的非均匀弹性介质中的平面 P 波和 SV 波。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
渡辺一実、小田明: 日本機械学会東北支部米沢地方講演会 機構論No.881-2. 49-50 (1988)
Kazumi Watanabe、Akira Oda:日本机械工程师学会东北分会米泽地区讲座机制第 49-50 号(1988 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
渡辺一実: International Journal of Engineering Science.
渡边和美:国际工程科学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazumi Watanabe: "A Reciprocationg Antiplane Shear Load With Harmonic Vibration on the Surface of an Elastic Half Space." Journal of Sound and Vibration. Paper No. P/97/88.
Kazumi Watanabe:“弹性半空间表面上具有谐波振动的往复反平面剪切载荷。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Kazumi其他文献

WATANABE Kazumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Kazumi', 18)}}的其他基金

Temporal characteristics of the thoughts of family members of suicide attempt survivors and needed care
自杀未遂幸存者家属思想的时间特征及需要照顾
  • 批准号:
    23660076
  • 财政年份:
    2011
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research

相似海外基金

Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
  • 批准号:
    2344923
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Reconfiguration of Curved Surfaces for Targeted Wave Propagation
合作研究:用于目标波传播的曲面设计和重构
  • 批准号:
    2247095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Mathematical Breakthroughs in Wave Propagation
波传播的数学突破
  • 批准号:
    FL220100072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Australian Laureate Fellowships
Research on the search for mediators of epileptic wave propagation using a mouse model of hereditary epilepsy
利用遗传性癫痫小鼠模型寻找癫痫波传播介质的研究
  • 批准号:
    23K06495
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meta-surface techniques for forming and estimating millimeter-wave propagation path
用于形成和估计毫米波传播路径的超表面技术
  • 批准号:
    23K03856
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Design and Reconfiguration of Curved Surfaces for Targeted Wave Propagation
合作研究:用于目标波传播的曲面设计和重构
  • 批准号:
    2247094
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Research related to burning wave propagation in ultra-high-density hydrogen and deuterium plasma
超高密度氢、氘等离子体中燃烧波传播的相关研究
  • 批准号:
    22H00118
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation
职业:了解角动量携带声波传播的基本动力学
  • 批准号:
    2142555
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了