Studies on Probability theory.

概率论研究。

基本信息

  • 批准号:
    62302006
  • 负责人:
  • 金额:
    $ 8.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
  • 财政年份:
    1987
  • 资助国家:
    日本
  • 起止时间:
    1987 至 1988
  • 项目状态:
    已结题

项目摘要

We have concerned with the theory of stochastic processes and related fields. For the purpose of promoting the activity in these fields, we held workshops and symposia on various topics during the period between 1987, April and 1989, March. In the meetings supported by the project, we were interested in the studies of the topics described below: Dirichlet space and Markov process, Malliavin calculus and applications, Gaussian process, stationary process and time series, Langivin equation, limit theorem for stochastic processes, stochastic process on fractals, stochastic process in random media, fluctuation of spectra in random media, percolation, Ising model, phase transition and critical phenomena, ergodic theory, analysis and geometry on loop space, stochastic control, large deviation and applications, applications of non-standard analysis to probability theory etc. Like many other branches of mathematics, probability theory has grown and developed with inspiration from other areas of science. This is especially clear in the theory of stochastic processes, where ideas from mathematical physics and engineering, for example, have exerted a noteworthy influence. In a series of the workshops organized by Uchiyama and Funaki, a serious attempt has been made to probabilistic methods in mathematical physics. In particular, we were devoted to the sutdy of the following topics: time dependent Ginzburg-Landau model and phase transitions, the laplacian in regions with many obstacles, hydrodynamic limit of various models. Stochastic analysis is a new branch of probability theory and is becoming more and more important in close connection with partial differential equations, geometry, ergodic theory and mathematical physics. For purpose of promoting the activity in stochastic analysis we have also organized a series of workshops. In these meetings, notable results related to various topics in stochastic analysis were announced.
本课程涉及随机过程理论及相关领域。为了促进这些领域的活动,我们在1987年4月至1989年3月期间举办了各种专题的讲习班和研讨会。在该项目支持的会议上,我们对下述专题的研究感兴趣:狄利克雷空间和马尔可夫过程,Malliavin演算及其应用,高斯过程,平稳过程和时间序列,Langivin方程,随机过程的极限定理,分形上的随机过程,随机介质中的随机过程,随机介质中的谱波动,渗流,Ising模型,相变和临界现象,遍历理论,分析和几何上的循环空间,随机控制,大偏差和应用,应用非标准分析的概率论等像许多其他分支的数学,概率论已经成长和发展的灵感来自其他领域的科学。这一点在随机过程理论中尤为明显,例如,数学物理和工程学的思想对随机过程理论产生了显著的影响。在一系列的讲习班举办的内山和船木,一个认真的尝试已经取得了概率方法在数学物理。特别地,我们致力于以下主题的研究:时间相关的Ginzburg-Landau模型和相变,具有许多障碍物的区域中的Laplacian,各种模型的流体动力学极限。随机分析是概率论的一个新的分支,它与偏微分方程、几何、遍历理论、数学物理等学科有着密切的联系,正变得越来越重要。为了促进随机分析的活动,我们还组织了一系列研讨会。在这些会议上,宣布了与随机分析中的各种主题有关的显着结果。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tokuzo Shiga: J.Math.Kyoto Univ.27. 195-215 (1987)
志贺德三:J.Math.Kyoto Univ.27。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hideo Nagai: Probab.Theory and related Fields. 75. 487-497 (1987)
永井英雄:Probab.Theory 及相关领域。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoichiro Takahashi: Proc.Symp.on Dynamical System,. 1-22 (1987)
Yoichiro Takahashi:Proc.Symp.on 动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tadahisa Funaki: Lecture Notes in Math.1322. 28-36 (1988)
Tadahisa Funaki:数学讲义.1322。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masatoshi Fukushima.: "On Dirichlet form for plurisubharmonic functions" Acta Math.159. 171-213 (1987)
Masatoshi Fukushima.:“关于多次谐波函数的狄利克雷形式”Acta Math.159。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IKEDA Nobuyuki其他文献

IKEDA Nobuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IKEDA Nobuyuki', 18)}}的其他基金

Analysis of the regressive change and its factor of synovial membrane in the temporomandibular joint
颞下颌关节滑膜退行性变化及其影响因素分析
  • 批准号:
    20791500
  • 财政年份:
    2008
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stochastic Analysis and Asymptotics
随机分析和渐进分析
  • 批准号:
    08454046
  • 财政年份:
    1996
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
  • 批准号:
    21K04211
  • 财政年份:
    2021
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
  • 批准号:
    2015386
  • 财政年份:
    2020
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
  • 批准号:
    2015382
  • 财政年份:
    2020
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Scalable Bayesian Stochastic Process Models for Neural Data Analysis
用于神经数据分析的可扩展贝叶斯随机过程模型
  • 批准号:
    10339334
  • 财政年份:
    2018
  • 资助金额:
    $ 8.96万
  • 项目类别:
Reliability evaluation and characteristic prediction in microfluidic devices applying stochastic process of random fluctuation problem
应用随机波动问题的随机过程的微流控器件的可靠性评估和特性预测
  • 批准号:
    17K18841
  • 财政年份:
    2017
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Statistical analysis of price discovery: a stochastic process approach
价格发现的统计分析:随机过程方法
  • 批准号:
    16K17105
  • 财政年份:
    2016
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analysis of nosocomial infections as a stochastic process
医院感染随机过程分析
  • 批准号:
    26670347
  • 财政年份:
    2014
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Developing Predictive Simulation Framework with Confidence Level for Stochastic Process and Its Application to Knowledge Discovery
开发具有置信度的随机过程预测仿真框架及其在知识发现中的应用
  • 批准号:
    26330261
  • 财政年份:
    2014
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new development of studies on stochastic process, statistical distributions and representation theory
随机过程、统计分布和表示论研究的新进展
  • 批准号:
    25610006
  • 财政年份:
    2013
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Questions in Stochastic Process Theory Arising from Mathematical Finance
金融数学引发的随机过程理论问题
  • 批准号:
    1308483
  • 财政年份:
    2013
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了