Questions in Stochastic Process Theory Arising from Mathematical Finance

金融数学引发的随机过程理论问题

基本信息

  • 批准号:
    1308483
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

The P.I. proposes to develop statistical tests, using modern techniques as developed and explained in the recent book Discretization of Processes, Springer, 2012 that he co-authored with Jean Jacod, to determine if stochastic volatility models are superior to local volatility models, and for which kind of risky assets that might be true. While there is much indirect evidence this is the case, the P.I. proposes systematically to examine the question. In addition, the P.I. proposes to use recently developed techniques in the theory of the expansion of filtrations to study questions concerning mathematical models of insider trading. It is hoped that such an analysis could be of benefit to regulators trying to ensure equitable financial markets, by showing how insider trading affects the calculation of the risk neutral measure of the insider, and renders it different (thereby affecting option prices) from the risk neutral measure of the traditionally informed market. Mathematical models of the evolution of stock prices are widely used on "Wall Street." While the models are justified by economic reasoning, there is a wide variety of them, and practitioners try to use models that they think correspond to reality. This is a difficult procedure, and mathematical/statistical techniques to check to see if one class of models is better than an alternative class currently do not exist in any comprehensive form. It is the purpose of this grant to develop systematically such procedures. This should lead to more accurate modeling not just for practitioners of the financial industry, but also it should benefit government regulators (such as the SEC, the CFTC, and the Federal Reserve) in their attempts to minimize excesses and corrupt practices. A second goal of this research is to provide a workable mathematical model of insider trading activity. In principle this should lead to the ability to detect insider trading activity as it happens in real time.
在他与让·雅各德合著的新书《过程的离散化》(Discretify of Process,2012)中,P.I.提议使用现代技术开发并解释统计检验,以确定随机波动率模型是否优于局部波动率模型,以及哪种风险资产的情况可能是这样。虽然有很多间接证据证明了这一点,但私家侦探还是建议系统地研究这个问题。此外,P.I.建议使用最近发展起来的过滤扩展理论中的技术来研究与内幕交易数学模型有关的问题。希望这种分析能够对试图确保公平金融市场的监管机构有所裨益,因为它显示了内幕交易如何影响内部人的风险中性衡量标准的计算,并使其不同于传统知情市场的风险中性衡量标准(从而影响期权价格)。股票价格演变的数学模型在“华尔街”上被广泛使用。虽然这些模型从经济上讲是合理的,但它们的种类很多,从业者试图使用他们认为符合现实的模型。这是一个困难的过程,目前还没有任何综合形式的数学/统计技术来检查某一类模型是否比另一类模型更好。这笔赠款的目的是系统地制定这样的程序。这不仅应该为金融行业的从业者带来更准确的建模,而且应该有利于政府监管机构(如SEC、CFTC和美联储)努力将过度行为和腐败行为降至最低。这项研究的第二个目标是为内幕交易活动提供一个可行的数学模型。原则上,这应该会导致能够在内幕交易活动发生时实时发现它。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Protter其他文献

Skorohod integral of a product of two stochastic processes
  • DOI:
    10.1007/bf02214263
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    David Nualart;Philip Protter
  • 通讯作者:
    Philip Protter
A remark on the weak convergence of processes in the Skorohod topology
  • DOI:
    10.1007/bf01066712
  • 发表时间:
    1993-07-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Jean Jacod;Philip Protter
  • 通讯作者:
    Philip Protter
Liquidity risk and arbitrage pricing theory
  • DOI:
    10.1007/s00780-004-0123-x
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Umut Çetin;Robert A. Jarrow;Philip Protter
  • 通讯作者:
    Philip Protter
Signing trades and an evaluation of the Lee–Ready algorithm
  • DOI:
    10.1007/s10436-011-0184-8
  • 发表时间:
    2011-07-26
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Marcel Blais;Philip Protter
  • 通讯作者:
    Philip Protter
Computing the probability of a financial market failure: a new measure of systemic risk
  • DOI:
    10.1007/s10479-022-05146-9
  • 发表时间:
    2022-12-22
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Robert Jarrow;Philip Protter;Alejandra Quintos
  • 通讯作者:
    Alejandra Quintos

Philip Protter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Protter', 18)}}的其他基金

Modeling Financial Catastrophe and COVID-19 Super Spreader Events
金融灾难和 COVID-19 超级传播者事件建模
  • 批准号:
    2106433
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Incomplete Markets and Financial Bubbles in Mathematical Finance
数学金融中的不完全市场和金融泡沫
  • 批准号:
    1714984
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Questions in Probability Relating to Mathematical Finance
与数学金融相关的概率问题
  • 批准号:
    1612758
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
  • 批准号:
    1138756
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
  • 批准号:
    0906995
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probability and Finance: Flows of Conditional Prices, Liquidity Issues, and Impulse Control AMC-SS
概率与金融:条件价格流、流动性问题和脉冲控制 AMC-SS
  • 批准号:
    0604020
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Second Cornell Conference on Mathematical Finance
第二届康奈尔数学金融会议
  • 批准号:
    0505420
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Theoretical and Applied Probability on Stochastic Calculus, Numerical Methods, and Mathematical Finance
随机微积分、数值方法和数学金融的理论和应用概率
  • 批准号:
    0202958
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Future Directions in Probability Theory
概率论的未来方向
  • 批准号:
    0226746
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
  • 批准号:
    9971720
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
  • 批准号:
    21K04211
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
  • 批准号:
    21K11955
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    DGECR-2020-00426
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
  • 批准号:
    2015386
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Capturing Salient Features in Point Process Models via Stochastic Process Discrepancies
协作研究:通过随机过程差异捕获点过程模型中的显着特征
  • 批准号:
    2015382
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
  • 批准号:
    1821258
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
  • 批准号:
    1821240
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了