Application of knowledge engineering for decomposition and parallel processing in power systems
知识工程分解并行处理在电力系统中的应用
基本信息
- 批准号:62420029
- 负责人:
- 金额:$ 21.06万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (A)
- 财政年份:1987
- 资助国家:日本
- 起止时间:1987 至 1989
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As a result of rapid growth and interconnection of electric power systems, various analysis related to them have become costly and time consuming processes as well as the fault tolerance capacity of the system has been reduced resulting a higher risk of total blackout. One way to over come this problem is employment of knowledge engineering based autonomous decentralized type control scheme which requires efficient decomposition of the system and parallel computation within each subsystem.Keeping the autonomous decentralized control as the main objective, research was carried out in various directions. They can be divided into following three topics mainly. (1) Non-uniform decomposition of power systems for parallel processing: This work developed a method which is different from the existing methods which are mainly based on uniform decomposition. But this method is proven to be more efficient than the existing methods. (2) Building an expert system using object oriented knowledge representation to restore power systems: This work developed a method to restore power systems by changing over transmission lines when they are over loaded. Object oriented knowledge representation makes it possible to represent power systems in a very natural way, to process data in parallel and to increase software productivity. (3) Identification of coherent machines and grouping them to construct equivalents: An efficient method which is based on modal analysis, to identify coherent machine groups in power systems was developed. This enables to construct a simplified model for the external part of a particular sub system. Hence reducing the computational time and memory requirement for various analysis related to each sub system.
由于电力系统的快速增长和互联,与它们相关的各种分析已经成为昂贵和耗时的过程,并且系统的容错能力已经降低,从而导致更高的全面停电风险。解决这一问题的方法之一是采用基于知识工程的自治分散型控制方案,该方案要求系统的有效分解和每个子系统内的并行计算。它们主要可以分为以下三个主题。(1)电力系统非均匀分解的并行处理:本工作开发了一种方法,这是不同于现有的方法,主要是基于均匀分解。但这种方法被证明是更有效的比现有的方法。(2)建立一个专家系统,使用面向对象的知识表示,以恢复电力系统:这项工作开发了一种方法来恢复电力系统的输电线路时,他们是过载。面向对象的知识表示使得以一种非常自然的方式表示电力系统、并行处理数据和提高软件生产率成为可能。(3)相干机组的识别和分组构造等值:提出了一种基于模态分析的电力系统相干机组识别方法。这使得能够为特定子系统的外部部分构建简化模型。从而减少了与每个子系统相关的各种分析的计算时间和内存需求。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Nakagawa, Y. Sekine: "Power system control based on object oriented knowledge representation." PE-88-29, Proc. IEEJ Technical meeting, 1988.
T. Nakakawa,Y. Sekine:“基于面向对象知识表示的电力系统控制。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. Kobayashi, H. Okamoto, A. Yokoyama, Y. Sekine: "Conceptual design of a distributed problem solving system for over load relief of transmission system." Proc. IEEJ General meeting, 1990.
N. Kobayashi、H. Okamoto、A. Yokoyama、Y. Sekine:“用于传输系统过载缓解的分布式问题解决系统的概念设计。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
塩沢,横山,関根: "重み付けノ-ド(ブランチ)除去による並列処理のための電力系統の不平等分割" 電気学会論文誌(B). 109. PP484-490 (1989)
Shiozawa、Yokoyama、Sekine:“通过加权节点(分支)移除进行并行处理的电力系统的不平等划分”,日本电气工程师学会汇刊 (B) 109。PP484-490 (1989)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
塩沢,横山,関根: 電気学会論文誌(B). 108. pp.483-490 (1988)
Shiozawa、Yokoyama、Sekine:日本电气工程师学会汇刊 (B) 108。第 483-490 页(1988 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
塩沢,横山,関根: "電力バランスを考慮した並列処理のための電力系統の自動不平等分割" 電気学会論文誌(B). 108. pp.483-490 (1988)
Shiozawa、Yokoyama、Sekine:“考虑功率平衡的并行处理的电力系统自动不等划分”日本电气工程师学会汇刊 (B) 108。第 483-490 页(1988 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEKINE Y.其他文献
SEKINE Y.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEKINE Y.', 18)}}的其他基金
Study on Fast and Reliable Power System Operation Control Using Parallel and Cooperative Distributed Problem Solving
并行协同分布式问题求解快速可靠电力系统运行控制研究
- 批准号:
02402029 - 财政年份:1990
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
相似海外基金
Integrated Knowledge, Engineering & Sustainable Communities
综合知识、工程
- 批准号:
CRC-2019-00222 - 财政年份:2022
- 资助金额:
$ 21.06万 - 项目类别:
Canada Research Chairs
Integrated Knowledge, Engineering & Sustainable Communities
综合知识、工程
- 批准号:
CRC-2019-00222 - 财政年份:2021
- 资助金额:
$ 21.06万 - 项目类别:
Canada Research Chairs
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
- 批准号:
2027970 - 财政年份:2020
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Integrated Knowledge, Engineering & Sustainable Communities
综合知识、工程
- 批准号:
CRC-2019-00222 - 财政年份:2020
- 资助金额:
$ 21.06万 - 项目类别:
Canada Research Chairs
Integrated Knowledge, Engineering & Sustainable Communities
综合知识、工程
- 批准号:
CRC-2019-00222 - 财政年份:2019
- 资助金额:
$ 21.06万 - 项目类别:
Canada Research Chairs
Automated Knowledge Engineering Methods to Improve Consumers' Comprehension of their Health Records
自动化知识工程方法可提高消费者对其健康记录的理解
- 批准号:
9895430 - 财政年份:2019
- 资助金额:
$ 21.06万 - 项目类别:
Collaborative Research: Productivity Prediction of Microbial Cell Factories using Machine Learning and Knowledge Engineering
合作研究:利用机器学习和知识工程预测微生物细胞工厂的生产力
- 批准号:
1821828 - 财政年份:2017
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Collaborative Research: Productivity Prediction of Microbial Cell Factories using Machine Learning and Knowledge Engineering
合作研究:利用机器学习和知识工程预测微生物细胞工厂的生产力
- 批准号:
1616216 - 财政年份:2016
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Collaborative Research: Productivity Prediction of Microbial Cell Factories using Machine Learning and Knowledge Engineering
合作研究:利用机器学习和知识工程预测微生物细胞工厂的生产力
- 批准号:
1616619 - 财政年份:2016
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Development of a Model for Kansei Value Recognition and Mapping of Biological Information by a Knowledge Engineering Approach
通过知识工程方法开发感性价值识别和生物信息映射模型
- 批准号:
16K00367 - 财政年份:2016
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)