On-board Electrical System Laboratory

车载电气系统实验室

基本信息

  • 批准号:
    522005634
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Major Research Instrumentation
  • 财政年份:
    2023
  • 资助国家:
    德国
  • 起止时间:
    2022-12-31 至 无数据
  • 项目状态:
    未结题

项目摘要

The different modes of transport (road, air, shipping) caused 28.5 % of the EU's greenhouse gas emissions in 2019. For mobility to become more sustainable in the future, there is a trend towards the electrification of vehicles, which will fundamentally change their electrical systems and require system adaptations due to energy storage integration. The vehicle electrical system laboratory will drive the development of future power electronics-dominated vehicle electrical systems and experimentally test new architectural concepts. Research will focus on aircraft, ship and satellite electrical systems in the low-voltage range. As a power-hardware-in-the-loop system, the on-board power supply laboratory will be capable of real-time operation, realistically reproducing time histories of mission profiles and passenger behavior, mapping malfunctions and faults, and thus emulating on-board networks sufficiently accurately to evaluate efficiency, reliability and safety. Special linear power amplifiers can be used to emulate the frequency- and time-variable on-board power system impedance and thus investigate how the required voltage quality is ensured during a large number of switching operations. The vehicle electrical system laboratory can be used to research new vehicle electrical system architectures for aircraft with the following research questions: 1) How can consumption-optimized control at the system level be implemented in future aircraft with DC electrical systems? 2) How can a variable voltage electrical system provide higher power in low altitude flight phases (such as takeoff and climb) and still meet the insulation strength, which is dependent on the air pressure (Paschen's law), of the electrical components? A design that takes into account Paschen's law is a special feature in aviation. Shipping is responsible for 3% of global CO2 emissions. In order to achieve the targeted emission reductions of 40% by 2030, new energy sources are to be integrated into the ship. In the future, for example, cruise ships will be equipped with photovoltaics on outside cabins and fuel cells and batteries per ship section. This will result in new structures that may include the introduction of a DC grid and the use of bidirectional converters. The on-board power system laboratory will consider ship operation phases, passenger behavior, and impacts on hotel loads to answer the research questions: 1) How can a meshed DC grid in a ship be operated stably using many common parts (to modularize the power system) while considering different grounding and protection concepts? 2) How is a consumption-optimized energy and power management in a ship DC grid controlled and which concepts (e.g. centralized, decentralized control with or without communication network) are optimal for which ship types?
2019年,不同的运输方式(公路、航空、航运)造成了欧盟28.5%的温室气体排放。为了使未来的移动性变得更加可持续,汽车电气化是一种趋势,这将从根本上改变其电气系统,并需要通过储能集成进行系统调整。车辆电气系统实验室将推动未来电力电子主导的车辆电气系统的发展,并对新的建筑概念进行实验测试。研究将侧重于飞机、船舶和卫星的低压电力系统。作为一个动力-硬件-在环系统,机载电源实验室将能够实时运行,逼真地再现使命剖面和乘客行为的时间历史,绘制故障和故障图,从而足够准确地模拟机载网络,以评估效率、可靠性和安全性。特殊的线性功率放大器可用于仿真频率和时间可变的车载电力系统阻抗,从而研究如何在大量开关操作期间确保所需的电压质量。车辆电气系统实验室可用于研究新的飞机车辆电气系统架构,研究问题如下:1)如何在未来的飞机直流电气系统中实现系统级的功耗优化控制?2)一个可变电压电气系统如何在低空飞行阶段(如起飞和爬升)提供更高的功率,同时仍然满足电气部件的绝缘强度,这取决于空气压力(帕邢定律)?考虑到帕邢定律的设计是航空领域的一个特点。航运业占全球二氧化碳排放量的3%。为了实现到2030年减排40%的目标,新能源将被整合到船舶中。例如,今后,游轮将在舱外安装光电设备,并在每个船舱安装燃料电池和蓄电池。这将导致新的结构,可能包括引入直流电网和使用双向转换器。船上电力系统实验室将考虑船舶运行阶段,乘客行为和对酒店负载的影响,以回答研究问题:1)如何在考虑不同接地和保护概念的同时,使用许多公共部件(以模块化电力系统)稳定运行船舶中的网状直流电网?2)如何控制船舶直流电网中的能耗优化能源和功率管理,以及哪些概念(例如,有或没有通信网络的集中式、分散式控制)最适合哪些船舶类型?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Attent- an advanced edge AI system that is able to detect electrical faults before they happen.
Attent——一种先进的边缘人工智能系统,能够在电气故障发生之前检测到它们。
  • 批准号:
    10114569
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
  • 批准号:
    2319964
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of High-Resolution Multichannel Electrical Resistivity Imaging System for Sub-Soil Characterization
MRI:第 1 轨采集高分辨率多通道电阻率成像系统,用于地下土壤表征
  • 批准号:
    2320057
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optical and Electrical Field Harness Testing System
光电场线束测试系统
  • 批准号:
    10007042
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    BEIS-Funded Programmes
Electrical/Asymmetric Flow Field-Flow Fractionation (EAF4) System with Light Scattering Detection
具有光散射检测功能的电/非对称流场流分离 (EAF4) 系统
  • 批准号:
    10428944
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Studying mechanisms for the evolution of synaptic and electrical signaling in the nervous system
研究神经系统突触和电信号的进化机制
  • 批准号:
    RGPAS-2021-00002
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quantitative evaluation of itch using the electrical stimulation and the development of measurement system
利用电刺激定量评估瘙痒及测量系统的开发
  • 批准号:
    22K07354
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studying mechanisms for the evolution of synaptic and electrical signaling in the nervous system
研究神经系统突触和电信号的进化机制
  • 批准号:
    RGPIN-2021-03557
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Tools and Techniques for Electrical and Optical Stimulation and Recording from the Nervous System
神经系统电和光刺激和记录的工具和技术
  • 批准号:
    RGPIN-2018-04323
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Magneto-opto-electrical measurement system with high spatial and temporal resolution
具有高空间和时间分辨率的磁光电测量系统
  • 批准号:
    505961721
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了