Three-Dimensional Eddy Current Analysis by Hybrid Finite Element and Boundary Element Method
混合有限元和边界元法的三维涡流分析
基本信息
- 批准号:63550223
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1988
- 资助国家:日本
- 起止时间:1988 至 1990
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have been developing the Hybrid Finite Element and Boundary Element Method for three-dimensional electromagnetic field analysis includes eddy current calculation. Among various electromagnetic quantities, the magnetic vector potential A and the electric scalar potential phi are widely used for the eddy current analysis. This approach is known as the A-phi method. We adopts the quantities A-phi in both the boundary element method and the finite element method. For some problems, it is very complicated to complicated to combine boundary conditions of the boundary element method with those of the usual finite element method. To avoid this difficulty, we have developed a novel boundary element formulation using magnetic potential.Although the A-phi method is theoretically satisfactory, we need four variables for each node in three-dimensional analysis. In order to reduce the number of unknown variables, we proposed the adoption of the magnetic field intensity H and the magnetic scalar potential psi in the hybrid method.We applied the proposed method to the real electric apparatus ; linear induction motor, magnetic levitation system, hyperthermia and superconducting magnet system.We also developed a novel optimal design method for electromagnetic fields. The optimal design method is based on a combination of the hybrid finite element and boundary element method for electromagnetic field calculation and the mathematical programming method for solving corresponding optimization problem. Application of the optimal design method to practical examples ; superconducting magnet system with magnetic shielding for Magnetic Resonance Imaging and hybrid magnet for magnetic levitation system, gave satisfying results.
我们一直在开发用于三维电磁场分析(包括涡流计算)的有限元和边界元混合方法。在各种电磁量中,磁矢势A和电标量势φ广泛用于涡流分析。这种方法被称为A-phi方法。我们在边界元法和有限元法中都采用了量A-phi。对于某些问题,将边界元法的边界条件与通常的有限元法的边界条件结合起来,会变得非常复杂。为了避免这一困难,我们发展了一种新的边界元公式,该公式使用了磁位,虽然A-phi方法在理论上是令人满意的,但在三维分析中每个节点需要四个变量。为了减少未知量,提出了在混合方法中引入磁场强度H和磁标势psi,并将该方法应用于真实的电气设备:直线感应电机、磁悬浮系统、热疗系统和超导磁体系统,提出了一种新的电磁场优化设计方法。该优化设计方法是基于电磁场计算的有限元-边界元混合法和求解相应优化问题的数学规划法相结合。将优化设计方法应用于磁共振成像用带磁屏蔽的超导磁体系统和磁悬浮系统用混合磁体的设计中,得到了满意的结果。
项目成果
期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Onuki: "Improved boundary element formulation using scalar potential in hybrid BEーFE inethod applied to electromagnetic problems" Boundary Element 12th(SpringerーVerlag). 12. 295-305 (1990)
T.Onuki:“在应用于电磁问题的混合 BE-FE 方法中使用标量势改进了边界元公式”《边界元》第 12 期(Springer-Verlag)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Onuki: "Improved boundary element formulation using scalar potential in hybrid BEーFE method applied to electromagnetic problems" Boundary Element 12th ( SpringerーVerlag ). 12. 295-305 (1990)
T.Onuki:“在应用于电磁问题的混合 BE-FE 方法中使用标量势来改进边界元公式”《边界元》第 12 期(Springer-Verlag)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Ishiyama: "Optimal Design Technique for Magnetic field Problems using Hybrid Finite-Boundary Element Method and Mathematical Programming Method" Advances in Boundary Elements. 2. 196-206 (1989)
A.Ishiyama:“使用混合有限边界元法和数学规划方法的磁场问题优化设计技术”边界元进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Amano: "Design of the Hybrid Magnet in the Magnctic Levitation System by the Boundary Element MethoD" Proc.of the 11th Int.Cont.on Magnetically Lavitater System and Linear Drives. 441-446 (1989)
H.Amano:“通过边界元法设计磁悬浮系统中的混合磁体”第 11 届磁悬浮系统和线性驱动器国际会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Onuki et al: "Investigation of End Effect and grad phi on Linear Induction Motor with Short Secondary" Trans. of IEE of Japan. 108-D. 1049-1055 (1988)
T. Onuki 等人:“短次级线性感应电机端部效应和梯度 phi 的研究”Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONUKI Takashi其他文献
ONUKI Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONUKI Takashi', 18)}}的其他基金
From Imagined Communities to "Placeable Bonding": Describing the 1980s Culture through Re-reading Literary Criticism
从想象的共同体到“可安置的联系”:通过重读文学批评来描述20世纪80年代的文化
- 批准号:
26370347 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Describing the 1960s British Culture through Re-reading Literary Criticism: "Modernisation" and Disappearance of Society
重读文学批评描绘20世纪60年代英国文化:“现代化”与社会的消失
- 批准号:
23720158 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Critical Points of Abrahamic Tradition : Cultural Studies on Philosophy and Political Theology of the Three Monotheisms and their Margins
亚伯拉罕传统的关键点:三大一神论及其边缘的哲学和政治神学的文化研究
- 批准号:
17201047 - 财政年份:2005
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Desire and Asceticism in the Ancient Mediterranean World
古代地中海世界的欲望与禁欲主义
- 批准号:
11610572 - 财政年份:1999
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the permanent magnet synchronous motor with optimal rotor construction
开发具有优化转子结构的永磁同步电机
- 批准号:
09650332 - 财政年份:1997
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of analysis method for calculating electromagnetic force using finite element method and boundary element method in electrical machinery
电机有限元法和边界元法计算电磁力分析方法的开发
- 批准号:
06650338 - 财政年份:1994
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
3D Eddy Current Analysis by the Hybrid FE-BE Method Using Magnetic Field Intensity
使用磁场强度的混合 FE-BE 方法进行 3D 涡流分析
- 批准号:
03650240 - 财政年份:1991
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
A new boundary element method for free surface flows
一种新的自由表面流边界元方法
- 批准号:
573089-2022 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
University Undergraduate Student Research Awards
Boundary element method for domains whose Green's function is not available
格林函数不可用域的边界元法
- 批准号:
21K19764 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
A study on a space-time boundary element method for the wave equation
波动方程时空边界元法研究
- 批准号:
20K11849 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coupling of fictitious domain methods and the boundary element method for the analysis of acoustic metamaterials
虚拟域方法与边界元方法耦合用于声学超材料分析
- 批准号:
423317638 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Research Grants
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Virtual Experiments and Design of Particulate Composites with the Inclusion-based Boundary Element Method (iBEM)
使用基于夹杂物的边界元法 (iBEM) 进行颗粒复合材料的虚拟实验和设计
- 批准号:
1762891 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Reliability Based Analysis with the Boundary Element Method
使用边界元法进行基于可靠性的分析
- 批准号:
1817399 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
- 批准号:
4978-2010 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Fast direct solvers for the boundary element method in 3D and their applications to optimal design problems
3D 边界元法的快速直接求解器及其在优化设计问题中的应用
- 批准号:
26870269 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)