3D Eddy Current Analysis by the Hybrid FE-BE Method Using Magnetic Field Intensity

使用磁场强度的混合 FE-BE 方法进行 3D 涡流分析

基本信息

  • 批准号:
    03650240
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1993
  • 项目状态:
    已结题

项目摘要

The use of computer software for the design of electromagnetic devices is now almost universal. The phenomena in electromagnetic fields, which are central to many aspects of electro magnetic machines, intrinsically spread over the infinite space. We sometimes have to consider the infinite region rigorously, e.g. for estimating the mangetic field made by superconduting magnets. The purpose of this research is to provide a useful method for the numerical calculation of electromagnetic field with open boundary, and particular attention is given to the 3-D eddy current problems. The finite element method (FEM) and the boundary element method (BEM), which have entirely different features from each other, are very useful for numerical analysis. Both methods seem to be complementary partners and not opponents. The FEM suits for the analysis of such a coplicated region which includes no-linear materials. However, it has some disadvantages in dealing with the infinitely extending fields. On the other hand, the BEM is useful for analyzing very large linear fields. Therefore taking account of the advantages in these methods, this research is concerned with the hybrid finite element and boundary element (FE-BE) method for the 3-D eddy current analysis. Both the FEM and the BEM can adopt various kinds of physical quantities as unknowns, so ther are many ways to combine both methods. Inthis research we have proposed several hybrid formulations in which some kinds of physical quantities are adopted as unknowns. The advantages and disadvantages of respective hybrid methods are examined. The appropriate boundary element discretization using edge elements is also developed, which is suitable for combining the FE region with the BE region. The approaches proposed in this research are always verified by concrete munerical examples.
使用计算机软件设计电磁装置现在几乎是普遍的。电磁场中的现象是电磁机器许多方面的核心,本质上遍布无限空间。我们有时必须严格地考虑无限区域,例如估算超导磁体产生的磁场。本研究的目的是为开边界电磁场的数值计算提供一种有用的方法,特别关注三维涡流问题。有限元法和边界元法是数值分析中非常有用的两种方法,它们具有完全不同的特点。这两种方法似乎是互补的伙伴,而不是对手。有限元法适用于分析这种包含非线性材料的复杂区域。但它在处理无限扩展的领域时存在一些缺点。另一方面,边界元法对于分析非常大的线性场是有用的。因此,结合这些方法的优点,本研究采用有限元-边界元混合法(FE-BE)进行三维涡流分析。有限元法和边界元法都可以采用各种物理量作为未知量,因此两种方法的联合收割机有多种结合方式。在本研究中,我们提出了几种混合公式,其中某些物理量作为未知数。各自的混合方法的优点和缺点进行检查。提出了适合于有限元与边界元相结合的边界元离散方法。本研究所提出的方法都得到了具体算例的验证。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Onuki: "Three-dimensional Eddy Current Analysis by Hybrid Finite Element and Boundary Element Method using Edge Elements" Journal of the Japan society for Simulation Technology. 11. 221-227 (1992)
T.Onuki:“使用边缘单元的混合有限元和边界元法的三维涡流分析”日本模拟技术学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Onuki: "Investigation of Supplied Currents in Tubular Linear Induction Motor" IEEJ Transaction D. 112. 1179-1186 (1992)
T.Onuki:“管状线性感应电机中供应电流的研究”IEEJ Transaction D. 112. 1179-1186 (1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Ishiyama: "Source estimation by a method combines MEG and EEG" The 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1. 82-85 (1992)
A.Ishiyama:“通过结合 MEG 和 EEG 的方法进行源估计”IEEE 医学和生物学工程学会第 14 届国际年会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
若尾 真治: "有限要素・境界要素併用E-H法による三次元渦電流場解析" 電気学会論文誌 A分冊. 112. 889-896 (1992)
Shinji Wakao:“使用组合的有限元和边界元 E-H 方法进行三维涡流场分析” 日本电气工程师学会会刊,卷 A. 112. 889-896 (1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Tsuda: "Thermal and Electromagnetic Behavior in NbTi/CuNi Superconducting Wires under Fast Changing Transport Current" IEEE Transactions on Magnetics. 30. (1994)
M.Tsuda:“NbTi/CuNi 超导线在快速变化的传输电流下的热和电磁行为”IEEE 磁学汇刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ONUKI Takashi其他文献

ONUKI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ONUKI Takashi', 18)}}的其他基金

From Imagined Communities to "Placeable Bonding": Describing the 1980s Culture through Re-reading Literary Criticism
从想象的共同体到“可安置的联系”:通过重读文学批评来描述20世纪80年代的文化
  • 批准号:
    26370347
  • 财政年份:
    2014
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Describing the 1960s British Culture through Re-reading Literary Criticism: "Modernisation" and Disappearance of Society
重读文学批评描绘20世纪60年代英国文化:“现代化”与社会的消失
  • 批准号:
    23720158
  • 财政年份:
    2011
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Critical Points of Abrahamic Tradition : Cultural Studies on Philosophy and Political Theology of the Three Monotheisms and their Margins
亚伯拉罕传统的关键点:三大一神论及其边缘的哲学和政治神学的文化研究
  • 批准号:
    17201047
  • 财政年份:
    2005
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Desire and Asceticism in the Ancient Mediterranean World
古代地中海世界的欲望与禁欲主义
  • 批准号:
    11610572
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the permanent magnet synchronous motor with optimal rotor construction
开发具有优化转子结构的永磁同步电机
  • 批准号:
    09650332
  • 财政年份:
    1997
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of analysis method for calculating electromagnetic force using finite element method and boundary element method in electrical machinery
电机有限元法和边界元法计算电磁力分析方法的开发
  • 批准号:
    06650338
  • 财政年份:
    1994
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-Dimensional Eddy Current Analysis by Hybrid Finite Element and Boundary Element Method
混合有限元和边界元法的三维涡流分析
  • 批准号:
    63550223
  • 财政年份:
    1988
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

基于等几何FEM-BEM的声振系统微结构拓扑优化方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
用BEM等方法对新型复合材料断裂、脱层的研究
  • 批准号:
    19171072
  • 批准年份:
    1991
  • 资助金额:
    1.3 万元
  • 项目类别:
    面上项目

相似海外基金

Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
  • 批准号:
    534339-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
  • 批准号:
    534339-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of Extended BEM Method Which Includes the Rotor-Tower Aerodynamic Interaction of Downwind Turbines
扩展 BEM 方法的发展,其中包括顺风涡轮机转子-塔架气动相互作用
  • 批准号:
    19K04195
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A 3D shape optimisation system for plasmonics using isogeometric BEM
使用等几何 BEM 的等离子体激元 3D 形状优化系统
  • 批准号:
    18K11335
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a next-generation IGA-BEM based on T-splines to investigate the performance of complex-shaped wave energy devices undergoing strong mutual interactions in large arrays
开发基于T样条的下一代IGA-BEM,以研究在大型阵列中经历强相互作用的复杂形状波浪能装置的性能
  • 批准号:
    18K13939
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simulation of superconducting Cavities with Isogeometric Boundary Elements (IGA-BEM)
等几何边界元超导腔仿真 (IGA-BEM)
  • 批准号:
    350869536
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grants
Multi-scale adhesive contact for layered media: Asymptotic modelling, BEM simulation, and MDR extension
层状介质的多尺度粘合接触:渐近建模、BEM 模拟和 MDR 扩展
  • 批准号:
    374549186
  • 财政年份:
    2017
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grants
Development of a design protocol for building information model (BIM) and building energy modeling (BEM)
开发建筑信息模型 (BIM) 和建筑能源建模 (BEM) 的设计协议
  • 批准号:
    483302-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Engage Grants Program
Application of the BEM CSS design methodology to a Sencha ExtJs App
BEM CSS 设计方法在 Sencha ExtJs 应用程序中的应用
  • 批准号:
    485165-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
B-bem: The Bayesian building energy management Portal
B-bem:贝叶斯建筑能源管理门户
  • 批准号:
    EP/L024454/1
  • 财政年份:
    2014
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了