Wetting in porous media

多孔介质中的润湿

基本信息

项目摘要

The characterization and realistic modelling of random disordered materials as diverse as soils, sedimentary rocks, wood, bone, paper, polymer composites, catalysts, coatings, ceramics has been a major problem for physicists, earth scientists and engineers for many years. Nevertheless, the prediction of mechanical and optical properties of the material, as well as the prediction of transport and phase behavior of fluids in porous structures from measures of the morphology and topology is still an unsolved problem. Starting from a microscopic density functional for inhomogeneous fluids in porous media, we aim in this project to determine the dependence of thermodynamic quantities such as the free energy and the wetting behavior of a fluid on the geometry of the substrate. The porous substrate is modelled by overlapping grains (Boolean grain model) and is characterized by structure functions and morphological measures such as volume, surface area, integral mean curvature, and the connectivity of the pores. These measures are known as Minkowski functionals in integral geometry which provides powerful theorems to make the calculus convenient. In particular, the concept of parallel surfaces allows one to determine how physical phenomena such as wetting, capillary condensation and two-phase flow depend on the random structure and the morphology of the pores. The complicated pore structure of an interconnected three-dimensional network of capillary channels of nonuniform sizes and shapes distinguishes a porous medium from any other solid or planar substrate. The project attempts to connect the two main factors, morphology and interfacial effects such as surface energies and wettability, in order to predict phase behavior and transport of fluids in porous media.
多年来,土壤、沉积岩、木材、骨骼、纸张、聚合物复合材料、催化剂、涂料、陶瓷等各种随机无序材料的表征和现实建模一直是物理学家、地球科学家和工程师面临的一个主要问题。然而,材料的力学和光学性质的预测,以及从形貌和拓扑的测量中预测流体在多孔结构中的输运和相行为仍然是一个未解决的问题。从多孔介质中非均匀流体的微观密度泛函开始,我们的目标是在这个项目中确定热力学量,如自由能和流体的润湿行为对基材几何形状的依赖。多孔基质由重叠颗粒(布尔颗粒模型)建模,并以结构功能和形态测量(如体积、表面积、积分平均曲率和孔隙的连通性)为特征。这些测度在积分几何中被称为闵可夫斯基泛函,它提供了强大的定理,使微积分变得方便。特别是,平行表面的概念使人们能够确定诸如润湿、毛细凝结和两相流等物理现象如何依赖于孔隙的随机结构和形态。多孔介质不同于任何其他固体或平面基质,其复杂的孔隙结构是由大小和形状不均匀的毛细管通道组成的相互连接的三维网络。该项目试图将两个主要因素,形貌和界面效应(如表面能和润湿性)联系起来,以预测流体在多孔介质中的相行为和输运。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Klaus Mecke其他文献

Professor Dr. Klaus Mecke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Klaus Mecke', 18)}}的其他基金

Tensor valuations
张量估值
  • 批准号:
    197096744
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Sheared capillary waves on nanometer scales
纳米尺度的剪切毛细波
  • 批准号:
    23959189
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Morphologie stochastischer Geometrien und ihre Anwendung in der Statistischen Physik
随机几何形态及其在统计物理中的应用
  • 批准号:
    5208112
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

多孔Ti-MSNs@MGF+DX抗炎—成肌体系应用于颞下颌关节假体的作用和机制研究
  • 批准号:
    82370984
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
  • 批准号:
    82370933
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
均匀纳米孔低介电材料的可控制备研究
  • 批准号:
    90606011
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Multiscale Bacterial Transport in Porous Media
职业:多孔介质中的多尺度细菌传输
  • 批准号:
    2340501
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
  • 批准号:
    2327640
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The nonlinear erosion of porous media
多孔介质的非线性侵蚀
  • 批准号:
    2882408
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了