ENERGIZE: Adjoint-based and additive manufacturing-enabled optimization of hydrogen combustion systems

ENERGIZE:基于伴随和增材制造的氢气燃烧系统优化

基本信息

项目摘要

Green hydrogen combustion will play a key role in transition towards renewable energies. However, the combustion of hydrogen presents the gas turbine community with new significant challenges. Firstly, flame stabilization in the combustion chamber is incremental to safe operation of gas turbines, but state-of-the-art solutions used in natural gas combustors are not transferable to fuels with high hydrogen content. Secondly, the interaction of turbulent flow structures with hydrogen flame fronts is not well understood, due to the lack of experimental data and detailed numerical simulations. These turbulence-flame interactions are, however, of high relevance for practical configurations. On the one hand, it causes a corrugation of the flame sheet to allow for high global consumption rates. On the other hand, it leads to hot spot-induced NOx emissions, thermoacoustic instabilities and flame noise. A main challenge is therefore to control turbulence-flame interactions to balance these both positive and negative effects. To address these challenges and to overcome the existing barriers to hydrogen combustion in gas turbines, entirely new combustor designs must be developed. Until now, however, the design parameters of combustor have been significantly limited by the manufacturing restrictions of conventional cutting and casting techniques. In this context, the inclusion of additive manufacturing (AM) technologies in the development process can be a game changer. These technologies significantly widen the design parameter space, paving the way to manufacture designs completely detached from conventional constraints. However, using conventional experimental and numerical methods, it is impossible to develop a burner design that accounts for the immense degrees of freedom of AM. The key goal of ENERGIZE is to fundamentally improve combustor design processes by employing inverse model-based techniques for combustor design optimization under the physical and technical constraints imposed by hydrogen combustion. This inverse technique is based on the adjoint form of the governing mean field equations and allows for dramatic speed-up of the optimization process. In the ENERGIZE project this technique is developed to optimize a turbulent hydrogen jet flame with the objective to reduce flame flashback and NOx emissions via tailored flow control applications. These include porous media, surface roughness/smoothness and suction/blowing via microchannels. The approach is interdisciplinary combining model-based optimization and flow control, cutting-edge additive manufacturing, and experimental combustion diagnostics. This combined approach is expected to reveal fundamental insight into hydrogen combustion and will deliver an integrated framework for the development of new hydrogen combustion technology.
绿色氢燃烧将在向可再生能源过渡中发挥关键作用。然而,氢的燃烧给燃气涡轮机界带来了新的重大挑战。首先,燃烧室中的火焰稳定对于燃气轮机的安全操作是增量的,但是天然气燃烧器中使用的最先进的解决方案不能转移到具有高氢含量的燃料。其次,由于缺乏实验数据和详细的数值模拟,湍流结构与氢火焰前锋的相互作用还没有得到很好的理解。然而,这些粘性-火焰相互作用对于实际配置具有高度相关性。一方面,它导致火焰片的收缩,以允许高的全球消耗率。另一方面,它导致热点诱导的NOx排放,热声不稳定性和火焰噪声。因此,一个主要的挑战是控制燃烧-火焰的相互作用,以平衡这些积极和消极的影响。为了应对这些挑战并克服燃气轮机中氢气燃烧的现有障碍,必须开发全新的燃烧器设计。然而,到目前为止,燃烧室的设计参数已大大限制了传统的切割和铸造技术的制造限制。在这种情况下,在开发过程中加入增材制造(AM)技术可以改变游戏规则。这些技术显着拓宽了设计参数空间,为制造完全脱离传统限制的设计铺平了道路。然而,使用传统的实验和数值方法,这是不可能的开发一个燃烧器的设计,占AM的巨大的自由度。的主要目标是从根本上改善燃烧室的设计过程,采用基于逆模型的技术,燃烧室的设计优化下的物理和技术的限制,氢燃烧。这种逆技术是基于伴随形式的平均场方程,并允许显着加快优化过程。在ECORGIZE项目中,开发该技术以优化湍流氢射流火焰,目的是通过定制的流量控制应用减少火焰回火和NOx排放。这些包括多孔介质、表面粗糙度/光滑度和通过微通道的抽吸/吹送。该方法是跨学科的,结合了基于模型的优化和流量控制,尖端的增材制造和实验燃烧诊断。这种结合的方法有望揭示氢燃烧的基本见解,并将为新的氢燃烧技术的开发提供一个综合框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Kilian Oberleithner其他文献

Professor Dr.-Ing. Kilian Oberleithner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Kilian Oberleithner', 18)}}的其他基金

Feed-back control of the precessing vortex core in swirl-stabilized flames to exploit its direct impact on flame dynamics, thermoacoustic instabilities and emissions.
旋流稳定火焰中进动涡核的反馈控制,以利用其对火焰动力学、热声不稳定性和排放的直接影响。
  • 批准号:
    247226395
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamics of Swirl and Jet Flames (SWJET)
旋流和射流火焰动力学 (SWJET)
  • 批准号:
    441269395
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
LowNoise: Linear Stability and Resolvent Analysis for Prediction and Mitigation of Wind Turbine Trailing-edge Noise
低噪声:用于预测和缓解风力涡轮机后沿噪声的线性稳定性和分辨率分析
  • 批准号:
    458062719
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamics of turbulent separation bubbles – a linear modeling approach
湍流分离气泡动力学 - 线性建模方法
  • 批准号:
    504349109
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
BOOST: Boosting Linearized Mean-Field Methods using Physics Informed Neural Networks
BOOST:使用物理信息神经网络增强线性平均场方法
  • 批准号:
    506170981
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Active Flow Control of Hydrodynamic Instabilities in Francis Turbines based on Linear Stability Theory
基于线性稳定性理论的混流式水轮机水动力不稳定性主动流量控制
  • 批准号:
    429772199
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: CFD-based Adjoint Methods for Design Applications with Unsteady Separated Flows
EAGER:用于非定常分离流设计应用的基于 CFD 的伴随方法
  • 批准号:
    2110095
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adjoint sensitivity analysis based on lattice Boltzmann method for flow-induced sound problems
基于格子玻尔兹曼法的流致声问题伴随灵敏度分析
  • 批准号:
    20K22397
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: (An)elastic mantle structure based on 3D wave simulations & full waveform inversion: From GLobal ADjoint models to visualization of Slabs, Plumes And Convection in MANt
职业:基于 3D 波模拟的弹性地幔结构
  • 批准号:
    1945565
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A New Paradigm for Computing Discrete Adjoint Sensitivities Based on Operator-Overloading and Its Application to Aerodynamic Design
基于算子重载的离散伴随灵敏度计算新范式及其在气动设计中的应用
  • 批准号:
    1803760
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Streamlining of Adjoint-Based Adaptive High-Order Schemes for Computational Aerodynamics
计算空气动力学基于伴随的自适应高阶方案的简化
  • 批准号:
    475946-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Performance optimisation of passenger aircraft coupling aerodynamics with aerostructures based on adjoint approach
基于伴随方法的客机气动与结构耦合性能优化
  • 批准号:
    1948279
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了