LowNoise: Linear Stability and Resolvent Analysis for Prediction and Mitigation of Wind Turbine Trailing-edge Noise

低噪声:用于预测和缓解风力涡轮机后沿噪声的线性稳定性和分辨率分析

基本信息

项目摘要

The mitigation of flow noise from wind turbines is of central importance for current and future, even more powerful wind turbines. The most important noise source is the trailing-edge noise. It is caused by pressure fluctuations in the boundary layer at the trailing edge of the rotor blade. Frequency characteristics and sound levels depend largely on the coherent eddy-like structures in the boundary layer. Current methods to reduce trailing-edge noise show contradictory results, as their influence on the coherent structures is neither sufficiently understood nor reliably modelled.Current investigations on free shear flows and boundary layer flows clearly show that linear stability and resolvent analysis can be used to systematically describe the formation and control of coherent structures. Therefore, in the LowNoise project, these very successful and novel methods are applied to the flow field of a typical wind turbine airfoil. The central goal is a physical low-dimensional model which describes the essential mechanisms of trailing-edge noise.The modelling is done in several steps. The coherent structures are approximated as linear modes of the mean-flow field, which can be determined by the stability or resolvent analysis. The pressure fluctuations on the wing surface are then determined by data assimilation from the linear modes. The trailing-edge noise, then, results from the integral of the pressure field on the wing surface.The central innovation of this approach is the modelling of the sound sources using linear stability and resolvent theory. On the one hand, this enables the quantitative determination of the trailing-edge noise at significantly fewer empirical input variables than with current low-dimensional models. On the other hand, the model provides the causal mechanisms of the formation of the coherent structures, and thus, of the trailing-edge noise, which allows to optimise existing control measures and to develop new more effective control measures.The LowNoise project starts with large-eddy simulations of the entire flow field. From the flow fields the velocity and pressure fluctuations of the coherent structures can be extracted and an empirical low-dimensional model can be derived. Based on the mean-flow fields of the simulation the stability and resolvent theory model will be developed. The validation of the simulations and the model is done experimentally by means of pressure and acoustic measurements in a wind tunnel. The project ends with a model-based analysis of the control influences of the trailing-edge noise.The models developed in LowNoise will show the essential physical relationships for the generation and effective reduction of trailing-edge noise of wind turbines. Furthermore, the model and concepts developed in LowNoise can be applied to a variety of other wall-bounded flows.
降低风力涡轮机的流动噪声对于当前和未来,甚至是更强大的风力涡轮机来说都是至关重要的。最重要的噪声源是后缘噪声。这是由转子叶片后缘边界层的压力波动引起的。频率特性和声级在很大程度上取决于边界层中的相干涡状结构。现有的抑制尾缘噪声的方法对相干结构的影响没有得到充分的理解,也没有得到可靠的模拟,目前对自由剪切流和边界层流动的研究表明,线性稳定性和预解分析可以系统地描述相干结构的形成和控制。因此,在LowNoise项目中,这些非常成功和新颖的方法被应用到典型的风力机翼型的流场中。中心目标是描述后缘噪声的基本机制的物理低维模型。建模分几个步骤完成。相干结构被近似为平均流场的线性模式,可以通过稳定性分析或预解分析来确定。然后,通过对线性模式的数据同化来确定机翼表面的压力波动。这种方法的主要创新之处在于利用线性稳定性理论和预解理论对声源进行建模。一方面,这使得能够在比目前的低维模型少得多的经验输入变量下定量确定后缘噪声。另一方面,该模型提供了相干结构和后缘噪声形成的原因机制,从而允许优化现有的控制措施和开发新的更有效的控制措施。LowNoise项目从整个流场的大涡模拟开始。从流场中可以提取出拟序结构的速度和压力脉动,并可以得到经验的低维模型。基于模拟得到的平均流场,建立了稳定性和预解性理论模型。通过风洞中的压力测量和声学测量对模拟和模型进行了实验验证。项目最后对尾缘噪声的控制影响进行了基于模型的分析。在LowNoise中开发的模型将显示产生和有效降低风力涡轮机尾缘噪声的基本物理关系。此外,在LowNoise中开发的模型和概念可以应用于各种其他壁面边界流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Kilian Oberleithner其他文献

Professor Dr.-Ing. Kilian Oberleithner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Kilian Oberleithner', 18)}}的其他基金

Feed-back control of the precessing vortex core in swirl-stabilized flames to exploit its direct impact on flame dynamics, thermoacoustic instabilities and emissions.
旋流稳定火焰中进动涡核的反馈控制,以利用其对火焰动力学、热声不稳定性和排放的直接影响。
  • 批准号:
    247226395
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamics of Swirl and Jet Flames (SWJET)
旋流和射流火焰动力学 (SWJET)
  • 批准号:
    441269395
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
ENERGIZE: Adjoint-based and additive manufacturing-enabled optimization of hydrogen combustion systems
ENERGIZE:基于伴随和增材制造的氢气燃烧系统优化
  • 批准号:
    523881008
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Dynamics of turbulent separation bubbles – a linear modeling approach
湍流分离气泡动力学 - 线性建模方法
  • 批准号:
    504349109
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
BOOST: Boosting Linearized Mean-Field Methods using Physics Informed Neural Networks
BOOST:使用物理信息神经网络增强线性平均场方法
  • 批准号:
    506170981
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Active Flow Control of Hydrodynamic Instabilities in Francis Turbines based on Linear Stability Theory
基于线性稳定性理论的混流式水轮机水动力不稳定性主动流量控制
  • 批准号:
    429772199
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Sparse linear models: Their existence and stability
稀疏线性模型:它们的存在性和稳定性
  • 批准号:
    EP/W011905/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Non-linear stability of inverter-dominated power grids
逆变器主导电网的非线性稳定性
  • 批准号:
    2767353
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stability of Non-Linear Filters in Stochastic Control
随机控制中非线性滤波器的稳定性
  • 批准号:
    528676-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Applications of Exterior Products to the Stability of Linear Systems of Difference Equations
外积在线性差分方程组稳定性中的应用
  • 批准号:
    527864-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Non-linear partial differential equations: Bubbles, layers and stability
非线性偏微分方程:气泡、层和稳定性
  • 批准号:
    DP170103087
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Robust Stability of Linear Dynamical Systems: Algorithms, Theory and Applications
线性动力系统的鲁棒稳定性:算法、理论与应用
  • 批准号:
    1620083
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
  • 批准号:
    316376675
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
A log-linear modeling of unstable variable selection: improving stability and extracting multiple sets of variables
不稳定变量选择的对数线性建模:提高稳定性并提取多组变量
  • 批准号:
    15K16064
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Linear and Nonlinear Stability for Infinite-Dimensional Dynamical Systems
无限维动力系统的线性和非线性稳定性
  • 批准号:
    1211315
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了