Study of Control Theory Construction Based on Computer Algebra

基于计算机代数的控制理论构建研究

基本信息

  • 批准号:
    02650301
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

The aim of this study is to construct the new control system theory based on the computer algebra. In 1990, the main work was to research the 2-D system theory and the following results were obtained.1) Coprimeness of 2-D transferfunction and stability of 2-D system : The coprimeness is quite difference from the one of 1-D transferfunction. Then the concepts such as zero-coprimeness and factor coprimeness should be considered. In addition, minor coprimeness was necessary in the case of 2-d transferfunction matrix. Here the new concept - OMEGA -coprimeness was defined and consequently both coprimeness and stability condition for 2-D system could be discussed uniformly.2) Synthesis algorithms of stabilizable compensator for 2-D system : The algorithm is reduced to solving the bilateral matrix equation AX+BY=C. In this work the software package for the matrix equation has been developed based on REDUCE and it was clarified that there existed the deep relationship between the 2-D system and the computer algebra.In 1991, based on the above results, 2-D system theories were extended to the general n-D system theories and following results were obtained.3) Stability of n-D system : Recently the new stability concept for n-D system, -practical stability- was introduced. Here the synthesis algorithms of the practical stabilizable compensator were established. And the Computer Aided Design system was also developed.4) Dynamical simulation of n-D system : The dynamical response of n-D ststem is very complex. Then the user friendly simulator for n-D system was developed by using computer graphics and REDUCE.
本研究的目的是构建基于计算机代数的新的控制系统理论。1990年的主要工作是研究二维系统理论,得到了如下结果:1)二维传递函数的共生性与二维系统的稳定性:两者的共生性与一维传递函数的共生性有很大的不同。然后,应考虑零互质和因子互质等概念。此外,在二维传递函数矩阵的情况下,需要少量互质。2)二维系统可镇定补偿器的综合算法:算法归结为求解双边矩阵方程AX+BY=C。本文基于Reduced开发了求解矩阵方程的软件包,阐明了二维系统与计算机代数之间存在着深刻的联系。1991年,在上述结果的基础上,将二维系统理论推广到一般的n-D系统理论,得到了以下结果。3)n-D系统的稳定性:最近引入了n-D系统的新稳定性概念--实用稳定性。建立了实用的可镇定补偿器的综合算法。4)多维系统的动力学仿真:多维系统的动力响应非常复杂。在此基础上,利用计算机图形学和归约技术,开发了界面友好的多维系统模拟器。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Li XU: "Bilateral Polynomial Matrix Equation in Two Indeterminates" Multidimeneional System and Signal Processing. 1. 36-379 (1990)
徐立:“两个不定式的双边多项式矩阵方程”多维系统与信号处理。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ll Xu,Osami Saito and Kenーichi Abe: "Bilateral Polynomial Matrix Equation in Two Indeterminates" Malutidimensional System and Signal Processing. Vol.1,No.4. 367-383 (1990)
Ll Xu、Osami Saito 和 Kenichi Abe:“两个不定数中的双边多项式矩阵方程”MalutiDimensional System and Signal Processing,第 1 卷,第 367-383 期(1990 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Li XU, Osami SAITO and Kenichi ABE: "Bilateral Polynominal Matrix Equations in Two Indeterminantes" Multidimensional system and Signal Processing. 1. 363-379 (1990)
Li XU、Osami SAITO 和 Kenichi ABE:“两个不定式中的双边多项式矩阵方程”多维系统和信号处理。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAITO Osami其他文献

SAITO Osami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAITO Osami', 18)}}的其他基金

A study on constructive stability and initial condition problem in supervisory control system
监控系统结构稳定性及初始条件问题研究
  • 批准号:
    12650439
  • 财政年份:
    2000
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
THEORITICAL SYSTEM OF MULTIDIMENSIONAL SYSTEM AND ITS APPLICATION
多维系统理论体系及其应用
  • 批准号:
    10650425
  • 财政年份:
    1998
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Parallel Computer Algebra System and its Application to nD system Theory
并行计算机代数系统的发展及其在nD系统理论中的应用
  • 批准号:
    05650391
  • 财政年份:
    1993
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Structure Constants for Bases of the Polynomial Ring
多项式环基的结构常数
  • 批准号:
    1763336
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Structural analysis of the automorphism group of a polynomial ring and its application
多项式环自同构群的结构分析及其应用
  • 批准号:
    15K04826
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on subrings and automorphisms of a polynomial ring
多项式环的子环和自同构研究
  • 批准号:
    19840041
  • 财政年份:
    2007
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
Study on matrix equations over a Laurent polynomial ring obtained from differential equations with a time-delay
时滞微分方程洛朗多项式环上矩阵方程的研究
  • 批准号:
    19540128
  • 财政年份:
    2007
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems in Algebra: Homology of the Automorphism Group Of the Polynomial Ring in N Variables Over a Field
代数问题:域上 N 变量多项式环自同构群的同调
  • 批准号:
    7703565
  • 财政年份:
    1977
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了