Efficient Discrete Optimization for Structured Prediction Problems in Computer Vision and Machine Learning
计算机视觉和机器学习中结构化预测问题的高效离散优化
基本信息
- 批准号:524352575
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to research and develop a new generally applicable, fast and scalable discrete optimization solver for structured prediction problems in computer vision and machine learning. Structured prediction problems are those tasks that involve computing high-dimensional output that has special structure in terms of constraints. Examples include tracking, where the output is a set of pairwise disjoint trajectories in a tracking graph, clustering, where the output is a partition of the whole set into pairwise disjoint clusters or correspondence problems, where a 1:1 mapping between points is sought. Pure neural network pipelines may not be ideal in this setting, since often modelling explicit constraints on their output is difficult or unnatural. On the other hand, optimization problems can be straightforwardly formulated such that they take into account the desired constraints. Unfortunately, standard solvers are often not applicable in structured prediction tasks, since they do not scale to the very high-dimensional setting. On the other hand specialized solvers that scale are hard to develop and whenever a new type of constraints is needed they need to be adapted or even re-written from scratch, limiting their applicability. The goal of this project is to go beyond this dichotomy and to combine the generality of standard solvers with the efficiency of specialized ones. To this end, we will distill efficient algorithmic design principles found in specialized solvers and generalize them, so that they work in more general settings. We will put a special emphasis on massive GPU parallelism. Additionally, the solver will also be machine-learning friendly. First, the solver will be trainable. It will be possible to improve the solver by training it on previously seen optimization problems, thereby increasing its performance on unseen ones. Second, the solver will be embedded in neural network pipelines for specific structured prediction problem tasks, allowing to train the neural network backbone together with the solver, thereby making the whole system perform better for the task at hand.
该项目的目标是研究和开发一种新的普遍适用,快速和可扩展的离散优化求解器,用于计算机视觉和机器学习中的结构化预测问题。结构化预测问题是那些涉及计算在约束方面具有特殊结构的高维输出的任务。示例包括跟踪,其中输出是跟踪图中的成对不相交轨迹的集合,聚类,其中输出是将整个集合划分成成对不相交的聚类或对应问题,其中寻求点之间的1:1映射。在这种情况下,纯神经网络管道可能并不理想,因为通常对其输出的显式约束进行建模是困难或不自然的。另一方面,优化问题可以直接公式化,使得它们考虑期望的约束。不幸的是,标准求解器通常不适用于结构化预测任务,因为它们不能扩展到非常高维的设置。另一方面,规模化的专用求解器很难开发,每当需要新类型的约束时,它们需要从头开始进行调整甚至重写,这限制了它们的适用性。这个项目的目标是超越这种二分法,并结合联合收割机的通用性标准求解器的效率专门的。为此,我们将提取在专门的求解器中发现的有效算法设计原则,并将其推广,以便它们在更一般的设置中工作。我们将特别强调大规模的GPU并行性。此外,求解器也将是机器学习友好的。首先,求解器将是可训练的。通过在以前见过的优化问题上训练求解器,从而提高其在看不见的问题上的性能,这将是可能的。其次,求解器将嵌入到神经网络管道中,用于特定的结构化预测问题任务,允许与求解器一起训练神经网络骨干,从而使整个系统在手头的任务中表现更好。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Paul Swoboda其他文献
Professor Dr. Paul Swoboda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A New Computationally Efficient Approach for Discrete Optimization in Hierarchical Decision-Making
分层决策中离散优化的一种新的高效计算方法
- 批准号:
1642514 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
The application of efficient discrete optimization algorithms to the development of a computer automated method for the elucidation of chemical structures
高效离散优化算法在开发化学结构阐明计算机自动化方法中的应用
- 批准号:
15K15944 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
A New Computationally Efficient Approach for Discrete Optimization in Hierarchical Decision-Making
分层决策中离散优化的一种新的高效计算方法
- 批准号:
1436452 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Developments of discrete optimization theory and efficient algorithms based on submodular structures
基于子模结构的离散优化理论和高效算法的发展
- 批准号:
25280004 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
An Effective and Time-efficient Approach to Solving Linear Discrete Optimization Problems using Discretized Network Flow
使用离散网络流解决线性离散优化问题的有效且省时的方法
- 批准号:
1248945 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Designing Efficient Algorithms for Combinatorial Optimization Problems with Discrete Convexity
为离散凸性组合优化问题设计高效算法
- 批准号:
23700016 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Computational Models and Efficient Algorithm Design for Discrete Optimization Problems
离散优化问题的计算模型和高效算法设计
- 批准号:
23500020 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of efficient algorithms for solving the discrete optimization problems on intersection graphs.
开发解决交集图离散优化问题的有效算法。
- 批准号:
22500020 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Efficient and Accurate Approximation Algorithms for Constrained Optimization of Discrete Convex Functions
离散凸函数约束优化的高效准确逼近算法的开发
- 批准号:
21740060 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of Large-scale Discrete Optimization Problems and Development of Efficient Algorithms Based on Submodularity Structures
基于子模结构的大规模离散优化问题分析和高效算法开发
- 批准号:
16310111 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)