Analysis of Large-scale Discrete Optimization Problems and Development of Efficient Algorithms Based on Submodularity Structures

基于子模结构的大规模离散优化问题分析和高效算法开发

基本信息

  • 批准号:
    16310111
  • 负责人:
  • 金额:
    $ 10.44万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

Major results of our research are the following.1. By utilizing discrete concave functions and considering possibly bounded side payments, we have established a common generalization of the marriage model due to Gale and Shapley and the assignment model due to Shapley and Shubik that are standard in the theory of two-sided matching markets, and have shown the existence of a pairwise stable outcome in our model.2. We have presented a first polynomial-time algorithm for the monotone min-max connected partitioning problem and have shown that the min-max connected partitioning problem is NP-hard if the cost function is not monotone, and that the min-sum connected partitioning problem is NP-hard even if the cost function is monotone. We also considered an evacuation problem in dynamic networks as an application of the tree partitioning problem.3. Bisubmodular functions are a natural "directed", or "signed", extension of submodular functions with several applications. We have investigated th … More e difficulty of extending the strongly polynomial version of the ordinary submodular function minimization algorithms to bisubmodular function minimization (BSFM), and we have showen a way around the difficulty. This new method gives the first combinatorial strongly polynomial algorithm for BSFM.4. We have considered minimum-cost source-location problems and their generalizations with three connectivity requirements (arc-connectivity requirements and two kinds of vertex-connectivity requirements), and have shown that the source location problem with edge-connectivity requirements in undirected networks is strongly NP-hard. Moreover, we have shown that the source location problems with three connectivity requirements are inapproximable within a ratio of c In D for some constant c, unless every problem in NP has an O (N log^2 N) -time deterministic algorithm. Here D denotes the sum of given demands. We have also devised (1+ In D) -approximation algorithms for all the extended source location problems if we have the integral capacity and demand functions.5. We have investigated support vector machine (SVM) with a discrete kernel, named electric network kernel, mined on the vertex set of an undirected graph. Emphasis is laid on mathematical analysis of its theoretical properties with the aid of electric network theory and the theory of discrete metrics. SVM with this kernel admits physical interpretations in terms of resistive eletric networks; in particular, the SVM decision function corresponds to an electric potential.6. We nave considered a problem of finding a minimum transversal that can be regarded as a natural generalization of source location problems and external network problems in (undirected) graphs and hypergraphs. We have found an interesting structural characterization of minimal deficient sets and have shown a necessary and sufficient condition for such sets to form a tree hypergraph. By using this characterization, we have obtained a polynomial-time algorithm, which provides first polynomial-time algorithms for source location problem in hypergraphs and external network problems in graphs and hypergraphs. Less
主要研究成果如下:1.本文的主要研究成果如下。利用离散凹函数并考虑可能有界的边际支付,我们建立了双边匹配市场理论中标准的Gale和Shapley的婚姻模型和Shapley和Shubik的分配模型的一般推广,并证明了该模型存在两两稳定的结果。我们给出了单调最小-最大连通划分问题的第一个多项式时间算法,并证明了当代价函数不是单调时,最小-最大连通划分问题是NP-难的,即使代价函数是单调的,最小和连通划分问题也是NP-难的。我们还考虑了动态网络中的疏散问题,作为树划分问题的一个应用。双子模函数是子模函数的自然“有向”或“带符号”扩展,具有几个应用。我们已经调查了…将通常的子模函数极小化算法的强多项式形式推广到双子模函数极小化(BSFM)的难度更大,我们给出了一种绕过这一困难的方法。这一新方法给出了BSFM的第一个组合强多项式算法。我们考虑了具有三个连通性要求(弧连通性要求和两种顶点连通性要求)的最小费用源选址问题及其推广,并证明了无向网络中具有边连通性要求的源选址问题是强NP难的。此外,我们还证明了具有三个连通性要求的源定位问题是不可逼近的,除非NP中的每个问题都有一个O(N log^2N)时间确定算法。这里D表示给定要求的总和。我们还设计了(1+in D)-近似算法来解决所有扩展的源定位问题,如果我们有完整的容量和需求函数。我们研究了在无向图的顶点集上挖掘的具有离散核的支持向量机,称为电网络核。重点借助于电网络理论和离散度量理论对其理论性质进行了数学分析。具有这种核的支持向量机允许根据阻性电网络进行物理解释;具体地说,支持向量机决策函数对应于电势。我们考虑了在(无向)图和超图中求最小横截的问题,它可以看作是源位置问题和外部网络问题的自然推广。我们发现了极小亏集的一个有趣的结构特征,并给出了极小亏集构成树形超图的充要条件。利用这个刻划,我们得到了一个多项式时间算法,它为超图中的源定位问题和图和超图中的外部网络问题提供了第一个多项式时间算法。较少

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A general two-sided matching market with discrete concave utility functions
  • DOI:
    10.1016/j.dam.2005.10.006
  • 发表时间:
    2006-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Fujishige;A. Tamura
  • 通讯作者:
    S. Fujishige;A. Tamura
Proximity Theorems of Discrete Convex Functions
离散凸函数的邻近定理
Discrete fixed point theorem reconsidered
重新考虑离散不动点定理
A Tree Partitioning Problem Arising from an Evacuation Problem in Tree Dynamic Networks
树动态网络疏散问题引发的树划分问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJISHIGE Satoru其他文献

FUJISHIGE Satoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJISHIGE Satoru', 18)}}的其他基金

Developments of the Fundamental Theory of Discrete Optimization andFast Algorithms Based on Submodular Structures
基于子模结构的离散优化基本理论和快速算法的发展
  • 批准号:
    20310088
  • 财政年份:
    2008
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Research on Fast Algorithms for Large-Scale Discrete Optimization Problems Based on Submodularity Structures
基于子模结构的大规模离散优化问题快速算法基础研究
  • 批准号:
    13480113
  • 财政年份:
    2001
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Studies on Submodular Structure of Large-scale Combinatorial Systems
大规模组合系统子模结构的基础研究
  • 批准号:
    10680429
  • 财政年份:
    1998
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Efficiency of Discrete Optimization Algorithms and Discrete Structures
离散优化算法和离散结构的计算效率
  • 批准号:
    10205217
  • 财政年份:
    1998
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Fundamental Studies on Large-Scale combinatorial Systems Based on Submodular Analysis
基于子模分析的大规模组合系统基础研究
  • 批准号:
    04832006
  • 财政年份:
    1992
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Analysis of Combinatorial Optimization Problems with Submodular Structures and Design of Efficient Algorithms
子模结构组合优化问题分析及高效算法设计
  • 批准号:
    01540168
  • 财政年份:
    1989
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 10.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了