STUDIES ON FUNCTIONAL AND REAL ANALYSES VIA UNIVERSAL AND UNIFIED APPROACH

通过通用和统一的方法进行泛函分析和实分析的研究

基本信息

  • 批准号:
    03302004
  • 负责人:
  • 金额:
    $ 10.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

Details of results (including names of contributors) should be found in "THE RESEARCH REPORT"; We will state only the research objects with which each research group has mainly concerned through the project.(1)(Research group on operator algebras and function algebras) Index theory for II_1 factors, completely positive maps, non-abelian dynamical systems, Kac groups and quantum groups (Operator algebra theory), and Douglas algebras, Bourgain algebras, Toeplitz and Hankel operators, etc. (Function algebra theory), are investigated in this group; many results which seem to be important arer given.(2)(Research group on Banach function spaces) Non-commutative processes (stability of their system), Clarkson type inequality, (linear, semi-linear, and non-linear) evolution equation, entropies of quantum systems (with applications to heredity theory), non-linear Perron-Frobenius theory, outer functions, etc., are investigated from various stand points and many results are obtained.(3)(Research … More group on representation theory) Representations of quantum groups, infinite-dimensional Lie groups, and Lie algebras and their representations, Kostant theory and Feynman path integral, homogeneous spaces of semi-simple Lie groups, etc., were investigated extensively.(4)(Research group on partial differential equations) Semigroups of operators and evolution equation, asymptotic behavior of interfaces and blow-up of solutions for non-linear equations, Scattering theory for Schrodinger operators, mathematical study of quantum field theory, WKB method,microlocal analysis, Torotter type formulas, etc., were studied and added greately to our knowledge of the theory.(5)(Research group on real analysis) Studies on global density theorem for Federer measures, Sato's generalized functions valued in locally convex spaces, Fefferman-Phong inequality, quasi-invariant measures for commutative transformation groups, extrapotation for infinite measure spaces, etc., are aimed and results which seem to be influential are obtained. Less
研究结果的详细内容(包括贡献者姓名)请参见“研究报告”;我们将仅说明每个研究小组通过项目主要关注的研究对象。(1)(算子代数和函数代数研究组)研究了II_1因子、完全正映射、非交换动力系统、Kac群和量子群的指标理论(算子代数理论),以及道格拉斯代数、Bourgain代数、Toeplitz和Hankel算子等(函数代数理论),给出了许多重要结果。(2)(Banach函数空间研究组)非对易过程(其系统的稳定性)、克拉克森型不等式、(线性、半线性和非线性)演化方程、量子系统的熵(在遗传理论中的应用)、非线性Perron-Frobenius理论、外函数等,从不同的角度进行了研究,并取得了许多成果。(3)(研究 ...更多信息 表示论上的群)量子群的表示、无限维李群和李代数及其表示、Kostant理论和Feynman路径积分、半单李群的齐性空间等,进行了广泛的调查。(4)(偏微分方程研究组)算子半群与发展方程、界面的渐近性态与非线性方程解的爆破、薛定谔算子的散射理论、量子场论的数学研究、WKB方法、微局部分析、Torotter型公式等都被研究过了,大大增加了我们的理论知识。(5)(真实的分析研究组)研究Federer测度的整体密度定理、局部凸空间中的Sato广义函数、Festiman-Phong不等式、交换变换群的拟不变测度、无限测度空间的外推等。的目的和结果,似乎是有影响力的。少

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nishishiraho: "The degree of the best approximation in Banach spaces" To appear in Tohoku Math.Journal.
T.Nishishiraho:“巴拿赫空间中的最佳近似度”发表于东北数学期刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ito: "American Math.Soc." Diffusion Equations, 270 (1992)
S.Ito:“美国数学学会”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ohya: "Information dynamics and its application to optical communication processes" Springer Lecture Notes in Physics. 378. 81-92 (1991)
M.Ohya:“信息动力学及其在光通信过程中的应用”施普林格物理学讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Komastu: "Microlocal analysis in Gevrey classes and in complex domains in "Microlocal Analysis and Applications"." Lecture Notes in Math. 1495. 161-236 (1991)
H.Komastu:“《微局部分析与应用》中 Gevrey 类和复杂域中的微局部分析。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ohya and N.Muraki: "Note on continuity of information ratio" Illinois Journal of Math.36. 529-550 (1992)
M.Ohya 和 N.Muraki:“关于信息比率连续性的注释”Illinois Journal of Math.36。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAYASU Takateru其他文献

OKAYASU Takateru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAYASU Takateru', 18)}}的其他基金

RESEARCHES ON SIMULTANEOUS UNITARY DILATIONS OF OPERATORS ON HILBERT SPACES
Hilbert空间算子联立酉扩张的研究
  • 批准号:
    12640152
  • 财政年份:
    2000
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Study of the splitting-*-homomorphisms by ordered zero completely positive maps and the heredity of invariant properties of C*-algebras
有序零完全正映射的分裂-*-同态及C*-代数不变性质的遗传性研究
  • 批准号:
    20K03644
  • 财政年份:
    2020
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Completely positive maps and automorphisms of von Neumann factors
冯诺依曼因子的完全正映射和自同构
  • 批准号:
    542958-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2019
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2018
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2017
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Factorizable completely positive maps and Connes' embedding problem
可因式分解的完全正映射和 Connes 嵌入问题
  • 批准号:
    511406-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 10.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2016
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2015
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Capacities of completely positive maps
完全正图的能力
  • 批准号:
    376918-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Invariants for Completely Positive Maps and Multivariable Operator Theory
完全正映射的不变量和多变量算子理论
  • 批准号:
    9802474
  • 财政年份:
    1998
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了