Magnetic Phase Transitions and Critical Phenomena of Two-Dimensional Systems

二维系统的磁相变和临界现象

基本信息

  • 批准号:
    03640334
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

Topological phase transitions of two-dimensional systems with vortex excitations are analyzed. As a new type of order parameter of such topological transitions, a vorticity modulus is introduced and its behavior is studied by means of a Monte Carlo sinulation combined with an appropriate type of boundary conditions. Two-Dimensional XY (plane rotator) model, triangular-lattice Heisenberg antiferromagnet and ferromagnetic Heisenberg model are studied and the results are analyzed based on a finite-size scaling theory. In the case of the XY model, the results support a theory proposed by Kosterlitz-Thonless, while in case of triangular antiferromagnets, the results support the occurrence of a finitetemperature topological transition driven by Z_2 -vortices as suggested by Kawamura and Miyashita.Critical properties of triangular-lattice antiferromagnets are studied near two dimensions on the basis of a field theoretic nonlinear sigma model and the renormalization-group epsilon=d-2 expansion. Critical properties of XY and Heisenberg antiferromagnets on a three-dimensional stacked-triangular lattice are also studied directly by extensive Monte Carlo simulations. The estimated exponents and the amplitude ratio are in good agreement with the experimental results.Electron-ripplon interactions in a two-dimensional electron system on liquid helium surface are studied.With a two-dimensional hyperlattice in mind, energy spectrum of tightbinding models under strong magnetic and electric fields are studied.Transport properties of layered electronic systems under strong magnetic fields are studied.
分析了二维涡旋激励系统的拓扑相变。作为这种拓扑转变的一种新的序参量,引入了涡度模量,并通过Monte Carlo模拟结合适当类型的边界条件研究了它的行为.研究了二维XY(平面旋转体)模型、三角格子海森堡反铁磁体模型和铁磁海森堡模型,并基于有限尺寸标度理论对结果进行了分析。在XY模型的情况下,结果支持Kosterlitz-Thonless提出的理论,而在三角形反铁磁体的情况下,结果支持了Kawamura和Miyashita提出的由Z_2 -涡旋驱动的有限温度拓扑转变的发生.基于场论非线性σ模型和重整化方法,研究了三角晶格反铁磁体在二维附近的临界性质.组n =d-2膨胀。通过大量的Monte Carlo模拟直接研究了XY和Heisenberg反铁磁体在三维叠层三角晶格上的临界性质。研究了液氦表面二维电子系统中的电子-ripplon相互作用,考虑二维超晶格,研究了强磁场和电场作用下紧束缚模型的能谱,研究了强磁场作用下层状电子系统的输运性质.

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H. Kawamura: "Chiral Criticality near Two Dimensions" J. Phys. Soc. Jpn. 60. 1839-1843 (1991)
H. Kawamura:“二维附近的手性临界”J. Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.KAWAMURA: "Free-Vortex Formation and Topological Phase Transitions of Two-Dimenstional Spin Systems" Phy.Rev.B. (1993)
H.KAWAMURA:“二维自旋系统的自由涡形成和拓扑相变”Phy.Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.KIKUCHI: "Free-Vortex Formation of the Plane Rotator Model" J.Magn.Magn.Mater.104-107. 227-228 (1992)
M.KIKUCHI:“平面旋转器模型的自由涡流形成”J.Magn.Magn.Mater.104-107。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.KAWAMURA: "Monte Carlo Study of Chiral Ctiticality-XY and Heisenberg Stacked-Triangular Antiferromagnets" J.Phys.Soc.Jpn.61. 1299-1325 (1992)
H.KAWAMURA:“手性临界性-XY 和海森堡堆叠三角形反铁磁体的蒙特卡罗研究”J.Phys.Soc.Jpn.61。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ohtsuki: "Electronic States in disordered layered systems in the quantum Hall regime" Surface Science. 263. 263-265 (1992)
T.Ohtsuki:“量子霍尔体系中无序层状系统中的电子态”表面科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAMURA Hikaru其他文献

KAWAMURA Hikaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAMURA Hikaru', 18)}}的其他基金

Frustration-induced spin textures
沮丧引起的旋转纹理
  • 批准号:
    17H06137
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Exotic order in frustrated magnets
受挫磁铁中的奇异秩序
  • 批准号:
    18540374
  • 财政年份:
    2006
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic ordering and slow dynamics of frustrated systems
受挫系统的磁排序和缓慢动态
  • 批准号:
    16540341
  • 财政年份:
    2004
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frustrated Magnetism and Chiral Order
受挫的磁性和手性秩序
  • 批准号:
    14540357
  • 财政年份:
    2002
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chirality mechanism of spin-glass ordering
自旋玻璃有序的手性机制
  • 批准号:
    12640373
  • 财政年份:
    2000
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ordering and Dynamics of Vortex Matter
涡旋物质的有序性和动力学
  • 批准号:
    10640367
  • 财政年份:
    1998
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spin glass and chiral glass
旋转玻璃和手性玻璃
  • 批准号:
    06640504
  • 财政年份:
    1994
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Experimental study on the magnetic field-driven quantum phase transition in triangular lattice antiferromagnets with easy-plane anisotropy
易平面各向异性三角晶格反铁磁体磁场驱动量子相变实验研究
  • 批准号:
    20J22215
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Systematic charge doping and physical property studies for metallic quantum two-dimensional triangular lattice antiferromagnets
金属量子二维三角晶格反铁磁体的系统电荷掺杂和物理性质研究
  • 批准号:
    17K05515
  • 财政年份:
    2017
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spin-chirality-driven ferroelectricity on perfect triangular lattice antiferromagnets
完美三角晶格反铁磁体上自旋手性驱动的铁电性
  • 批准号:
    26400329
  • 财政年份:
    2014
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NMR study on the internal structure of a quantum spin liquid state in the triangular lattice antiferromagnets
三角晶格反铁磁体中量子自旋液态内部结构的核磁共振研究
  • 批准号:
    24340082
  • 财政年份:
    2012
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Search for novel characteristics of triangular lattice antiferromagnets exhibiting dielectric anomaly
寻找表现出介电异常的三角晶格反铁磁体的新特性
  • 批准号:
    09640422
  • 财政年份:
    1997
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了