Spin glass and chiral glass

旋转玻璃和手性玻璃

基本信息

  • 批准号:
    06640504
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

In Frustrated systems with continuous degrees of freedom, which have competing interaction between constituent elements, new 'chiral' degrees of freedom often appear which has no counterpart in unfrustrated systems. When there exists quenched randomess in addition to frustration, the ordering properties of such chiral system are expected to be quite novel. The purpose of the present study has been to investigate the phase transition of randomly frustrated systems with particular attention to the chirality by means of extensive Monte Carlo simulations. Two subjects, spin-glass magnets and ceramic superconductors, have been dealed with. By performing large-scale Monte Carlo simulations on the standard models for these systems, we have shown that a new chiral-glass phase, where the chirality orders in a spatially random manner with preserving the spin or the phase degrees of freedom disordered, is possible under appropriate conditions. Critical exponents characterizing the chiral-glass transition between the high-temperature disordered phase and the low-temperature chiral-glass phase are found to be close to the values of the three-dimensional Ising spin glass. In the case of spin-glass magnets, a new 'chirality' mechanism of the spin-glass transition has been proposed based on the numerical finding of the chiral-glass ordering, which could resolve the puzzle concerning the true nature of the experimentally observed spin-glass transitions. In the case of ceramic superconductors, it is shown that cuprate high-T_c superconductors, whose pairing symmetry has been established to be d-wave via recent experimental strudies, are good candidate materials to realize the chiral-glass state. Possible experimental detection of the proposed chiral-glass phase and the chiral-glass transition is examined in detail. In fact, several experimental results which partly support the chiral-glass state were already reported.
在具有连续自由度的受挫系统中,组成元素之间存在竞争相互作用,新的“手性”自由度经常出现,而在未受挫系统中没有对应的自由度。当除挫折外还存在淬灭随机性时,这种手性体系的有序性质将是非常新颖的。本研究的目的是通过广泛的蒙特卡罗模拟来研究随机受挫系统的相变,特别注意手性。两个主题,自旋玻璃磁体和陶瓷超导体,已经处理。通过对这些体系的标准模型进行大规模的蒙特卡罗模拟,我们已经证明了在适当的条件下,一种新的手性玻璃相是可能的,其中手性顺序在空间随机的方式下保持自旋或相自由度的无序。表征手性玻璃在高温无序相和低温手性玻璃相之间转变的临界指数与三维Ising自旋玻璃的值接近。在自旋玻璃磁体的情况下,基于手性-玻璃有序的数值发现,提出了一种新的自旋-玻璃转变的“手性”机制,这可以解决有关实验观察到的自旋-玻璃转变的真实性质的难题。在陶瓷超导体中,铜高t_c超导体是实现手性玻璃态的良好候选材料,其配对对称性通过最近的实验研究已经确定为d波。对所提出的手性玻璃相和手性玻璃转变的可能实验检测进行了详细的研究。事实上,已经有几个实验结果部分支持手性玻璃态。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Kawamura: "An equilibrium phase with Broken time-reversal symmetry" Phys.Rev.Letters. (1997)
H.Kawamura:“时间反转对称性被破坏的平衡相”Phys.Rev.Letters。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kurata: "Extended mean-field analysis of the stacked-triangular" J.Phys.Soc.Jpn.64. 232-241 (1995)
T.Kurata:“堆叠三角形的扩展平均场分析”J.Phys.Soc.Jpn.64。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Kawamura: "Numerical studies of chiral ordering in three-dimensional XY spin glasses" Phys. Rev. B. 51. 12398-12409 (1995)
H. Kawamura:“三维 XY 自旋玻璃中手性排序的数值研究” Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kawamura: "Numerical studies of chiral ordering in three-dimensional XY spin glasses" Phys.Rev.B. 51. 12398-12409 (1995)
H.Kawamura:“三维 XY 自旋玻璃中手性排序的数值研究”Phys.Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kurata: "Extended Mean-Field Analysis of the Stouked-Trianguler Ising Antiferromagnet" J. Phys. Soc. Jpn.64. 232-241 (1995)
H.Kurata:“Stouked-Trianguler Ising 反铁磁体的扩展平均场分析”J. Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAMURA Hikaru其他文献

KAWAMURA Hikaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAMURA Hikaru', 18)}}的其他基金

Frustration-induced spin textures
沮丧引起的旋转纹理
  • 批准号:
    17H06137
  • 财政年份:
    2017
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Exotic order in frustrated magnets
受挫磁铁中的奇异秩序
  • 批准号:
    18540374
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic ordering and slow dynamics of frustrated systems
受挫系统的磁排序和缓慢动态
  • 批准号:
    16540341
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frustrated Magnetism and Chiral Order
受挫的磁性和手性秩序
  • 批准号:
    14540357
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chirality mechanism of spin-glass ordering
自旋玻璃有序的手性机制
  • 批准号:
    12640373
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ordering and Dynamics of Vortex Matter
涡旋物质的有序性和动力学
  • 批准号:
    10640367
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic Phase Transitions and Critical Phenomena of Two-Dimensional Systems
二维系统的磁相变和临界现象
  • 批准号:
    03640334
  • 财政年份:
    1991
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
  • 批准号:
    23K03192
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
  • 批准号:
    2246790
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Spin Glass Systems as a Lossy Compression
作为有损压缩的旋转玻璃系统
  • 批准号:
    21K12046
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
  • 批准号:
    1954790
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Formation of single-crystal Si spin glass with a single W atom as a magnetic dopant and elucidation of its magnetic properties
以单个W原子作为磁性掺杂剂的单晶硅自旋玻璃的形成及其磁性能的阐明
  • 批准号:
    20H02560
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal control theory solves spin glass models with transverse field
最优控制理论求解横向场自旋玻璃模型
  • 批准号:
    19K23418
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
  • 批准号:
    1855509
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Preparation of super spin glass magnetic nanoparticles and biomedical application for hyperthermia therapy
超自旋玻璃磁性纳米颗粒的制备及其热疗生物医学应用
  • 批准号:
    17H02762
  • 财政年份:
    2017
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了