Magnetic ordering and slow dynamics of frustrated systems

受挫系统的磁排序和缓慢动态

基本信息

  • 批准号:
    16540341
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Magnetic ordering and slow dynamics of frustrated magnets have been studied theoretically and numerically mainly for spin glasses. Particular attention was paid to the "chirality", a quantity of recent theoretical and experimental interest. We examined whether the peculiar behavior of the "spin-chirality decoupling" proposed recently really occurred or not, as well as various off-equilibrium phenomena induced by the chirality such as the violation of the fluctuation-dissipation relation. We performed a large scale Monte Carlo simulation of the 3D Heisenberg Edward-Anderson model, and have revealed the existence of a finite-temperature chiral-glass transition and of the spin-chirality decoupling phenomenon at long length and time scales, as predicted by the present author. It was also found that the peculiar one-step-like replica-symmetry breaking (RSB) occurred in the chiral-glass ordered state. In magnetic fields, this RSB gives rise to a thermodynamic SQ transition even in fields, which consistently explains the long-standing experimental puzzle for the in-field behavior of canonical spin glasses. The peculiar RSB pattern was indeed observed by means of off-equilibrium simulations of spin glasses via the violation of the fluctuation-dissipation theorem.
本文主要对自旋玻璃的磁性有序和慢动力学进行了理论和数值研究。特别注意的是“手性”,一个最近的理论和实验的兴趣量。我们研究了最近提出的“自旋-手性解耦”的特殊行为是否真的发生,以及手性引起的各种不平衡现象,如涨落-耗散关系的破坏。我们对三维Heisenberg - Edward-Anderson模型进行了大规模蒙特卡罗模拟,并揭示了在长长度和时间尺度上存在有限温度的手性-玻璃化转变和自旋-手性解耦现象,正如作者所预测的那样。在手性玻璃有序态中还发现了一种特殊的一步式复制对称破缺(RSB)。在磁场中,这种RSB即使在场中也会引起热力学SQ跃迁,这一致地解释了规范自旋玻璃场内行为的长期实验难题。通过违反涨落耗散定理对自旋玻璃进行非平衡模拟,确实观察到了这种特殊的RSB模式。

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glasses inmagnetic fields
弱各向异性海森堡自旋玻璃在磁场中的复制对称破缺转变
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daisuke Imagawa;Hikaru Kawamura
  • 通讯作者:
    Hikaru Kawamura
Exact Analysis Based on Gauge Transformation in Spin-Glass Research
旋转玻璃研究中基于规范变换的精确分析
Correlation length of the Heisenberg ferromagnet in 2 and 3 dimensions
海森堡铁磁体在 2 维和 3 维中的相关长度
Numerical studies of the ordering of the ± J XY spin-glass ladder
± J XY 自旋玻璃梯排序的数值研究
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsukasa Uda;Hajime Yoshino;Hikaru Kawamura
  • 通讯作者:
    Hikaru Kawamura
Replica symmetry breaking transition of the weakly anisotropic Heisenberg sping glasses in magnetic fields
弱各向异性海森堡斯宾格玻璃在磁场中的复制对称破缺转变
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daisuke Imagawa;Hikaru Kawamura
  • 通讯作者:
    Hikaru Kawamura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAMURA Hikaru其他文献

KAWAMURA Hikaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAMURA Hikaru', 18)}}的其他基金

Frustration-induced spin textures
沮丧引起的旋转纹理
  • 批准号:
    17H06137
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Exotic order in frustrated magnets
受挫磁铁中的奇异秩序
  • 批准号:
    18540374
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frustrated Magnetism and Chiral Order
受挫的磁性和手性秩序
  • 批准号:
    14540357
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chirality mechanism of spin-glass ordering
自旋玻璃有序的手性机制
  • 批准号:
    12640373
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ordering and Dynamics of Vortex Matter
涡旋物质的有序性和动力学
  • 批准号:
    10640367
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spin glass and chiral glass
旋转玻璃和手性玻璃
  • 批准号:
    06640504
  • 财政年份:
    1994
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic Phase Transitions and Critical Phenomena of Two-Dimensional Systems
二维系统的磁相变和临界现象
  • 批准号:
    03640334
  • 财政年份:
    1991
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
  • 批准号:
    23K03192
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
  • 批准号:
    2246790
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Spin Glass Systems as a Lossy Compression
作为有损压缩的旋转玻璃系统
  • 批准号:
    21K12046
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
  • 批准号:
    1954790
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Formation of single-crystal Si spin glass with a single W atom as a magnetic dopant and elucidation of its magnetic properties
以单个W原子作为磁性掺杂剂的单晶硅自旋玻璃的形成及其磁性能的阐明
  • 批准号:
    20H02560
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimal control theory solves spin glass models with transverse field
最优控制理论求解横向场自旋玻璃模型
  • 批准号:
    19K23418
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
  • 批准号:
    1855509
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Preparation of super spin glass magnetic nanoparticles and biomedical application for hyperthermia therapy
超自旋玻璃磁性纳米颗粒的制备及其热疗生物医学应用
  • 批准号:
    17H02762
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了