Additive manufacturing of a novel class of implants with heterogeneous structures, combining different biomaterials and printing methods

结合不同的生物材料和打印方法,增材制造具有异质结构的新型植入物

基本信息

项目摘要

The additive method of micro-extrusion can be operated at room temperature and a multitude of biodegradable biomaterials is available in the meanwhile for this method. Here, we aim at creating new types of implants and tissue constructs that support full regeneration of common defects that occur at tissue interfaces like the osteochondral unit (bone and articular cartilage) or the tendon-bone interface (enthesis). Novel solutions will be developed by combining biomaterials that are specifically adapted to the respective tissues by means of multi-channel extrusion printing. Operation at room temperature will enable integration of tissue-specific, sensitive bioactive factors directly in the printing process. A major innovation of this project is the development and utilization of new printing patterns. Influence of the printing design is still a mostly unexplored topic in micro-extrusion printing, where so far commonly basic wood pile geometries are printed. Focus for the development is the generation of a maximum of concave surfaces as those have been proven to support cell adhesion and migration better than planar and convex surfaces. In addition, size and accessibility of the pores will be taken into account that are crucial for O2 and nutrient supply, both during cell culture and after implantation into the tissue defects. The mechanical properties of the scaffold resulting from the designed pattern will be included in the optimization processes, supported by computational modelling. Besides micro-extrusion, the AM technology of Melt Electrowriting (MEW) of thermoplastic polymers will be integrated in the scaffold design. As shown in preliminary experiments by the applicants, micro-extrusion (strand diameter >= 200 Mikrometer) and MEW (fiber diameter ca. 0.5-20 micromters) can be combined within one printing process. As with MEW highly defined microfiber meshes can be produced, the combination of both AM technologies allows the fabrication of scaffolds with hierarchical structures that provide suitable surfaces for cell attachment and development - but also microfiber networks that mimic the extracellular matrices of mammalian tissues. Integration of MEW meshes can enhance the mechanical stability of calcium phosphate scaffolds, improve the connection of different, extrusion-printed biomaterials and provide guiding structures for alignment of cells. Overall, a new generation of scaffolds and tissue constructs will be developed that consists of several biodegradable biomaterials and are fabricated by innovative combination of two AM technologies in one printing process. The resulting constructs will be thoroughly investigated concerning their structural, mechanical and biological properties, utilizing microscopy, mechanical testing, and state-of-the-art in vitro tests with primary human cells and human mesenchymal stem cells. All this data will be deeply analyzed to conclude about structure-property relation.
微挤压添加法可在室温下操作,同时该方法可制备多种可生物降解的生物材料。在这里,我们的目标是创造新型植入物和组织结构,支持骨软骨单位(骨和关节软骨)或肌腱-骨界面(附着点)等组织界面处常见缺陷的完全再生。通过多通道挤出印刷结合专门适合各自组织的生物材料,将开发出新颖的解决方案。在室温下操作将使组织特异性、敏感的生物活性因子直接整合到打印过程中。该项目的一大创新在于新型印刷图案的开发和利用。印刷设计的影响在微挤压印刷中仍然是一个尚未探索的话题,迄今为止,微挤压印刷通常印刷基本的木堆几何形状。开发的重点是生成最大程度的凹面,因为这些凹面已被证明比平面和凸面更好地支持细胞粘附和迁移。此外,还将考虑孔的大小和可及性,这对于细胞培养期间和植入组织缺损后的氧气和营养供应至关重要。由设计模式产生的支架的机械性能将包含在优化过程中,并由计算模型支持。除了微挤出之外,热塑性聚合物的熔融电写入(MEW)增材制造技术也将被集成到支架设计中。如申请人的初步实验所示,微挤出(线材直径>=200微米)和MEW(纤维直径约0.5-20微米)可以在一个印刷过程中结合起来。与 MEW 可以生产高度定义的微纤维网一样,两种增材制造技术的结合可以制造具有分层结构的支架,为细胞附着和发育提供合适的表面,而且还可以制造模仿哺乳动物组织细胞外基质的微纤维网络。 MEW 网格的集成可以增强磷酸钙支架的机械稳定性,改善不同的挤出印刷生物材料的连接,并为细胞排列提供引导结构。总体而言,将开发新一代支架和组织结构,由多种可生物降解的生物材料组成,并通过在一个打印过程中创新地组合两种增材制造技术来制造。将利用显微镜、机械测试以及对原代人类细胞和人类间充质干细胞进行最先进的体外测试,对所得构建体的结构、机械和生物特性进行彻底研究。所有这些数据将被深入分析,以得出结构-性能关系的结论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Gelinsky其他文献

Professor Dr. Michael Gelinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Gelinsky', 18)}}的其他基金

New generation of 3D scaffolds for patient-specific therapies in orthopedic applications
用于骨科应用中患者特定治疗的新一代 3D 支架
  • 批准号:
    392224788
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Biodegradable and elastic flock scaffolds from a single material system based on chitosan for articular cartilage regeneration
基于壳聚糖的单一材料系统的可生物降解和弹性植绒支架,用于关节软骨再生
  • 批准号:
    238200731
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hierarchically structured biphasic scaffolds mimicking osteochondral tissue
模仿骨软骨组织的分层结构双相支架
  • 批准号:
    182455002
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Flocktechnologisch erzeugte Scaffolds für das Tissue Engineering
使用植绒技术创建的组织工程支架
  • 批准号:
    36207143
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Anisotrope Porengefüge in Hydroxylapatit-Biokeramik für das Tissue Engineering von Hartgewebe
用于硬组织组织工程的羟基磷灰石生物陶瓷中的各向异性孔结构
  • 批准号:
    5428749
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of advanced healthy and diseased in vitro 3D glomerulus model for drug testing and understanding kidney disease mechanisms
开发先进的健康和患病体外 3D 肾小球模型,用于药物测试和了解肾脏疾病机制
  • 批准号:
    445679257
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Collagen-based implant materials with central agent depot for the therapy of bone defects
用于骨缺损治疗的具有中央药剂库的胶原基植入材料
  • 批准号:
    451966134
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似海外基金

Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Study of Powder Spreading Behavior for Additive Manufacturing Applications in a Novel Test Bed Environment
ERI:新型试验台环境中增材制造应用的粉末铺展行为研究
  • 批准号:
    2347633
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Novel Powder-Bed Ceramic Additive Manufacturing Assisted with Water-Based Inks, Layerwise Uniaxial Compression and Temperate Heating for Selective Particle Fusion
职业:新型粉床陶瓷增材制造辅助水基油墨、分层单轴压缩和温控加热以实现选择性粒子融合
  • 批准号:
    2236905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Dual-Laser Additive Manufacturing System for Novel Materials (Green3D)
用于新型材料的双激光增材制造系统 (Green3D)
  • 批准号:
    EP/X041190/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
  • 批准号:
    10698810
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Toward RIPEST Photopolymer Additive Manufacturing (PAM): A Cyber-Physical System of Novel Dual-wavelength Photoinhibition aided PAM
职业生涯:迈向最成熟的光聚合物增材制造 (PAM):新型双波长光抑制辅助 PAM 的网络物理系统
  • 批准号:
    2238557
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Additive Manufacturing of Polymer-Matrix Composites with High Concentration of Silicon-Carbide Particles by Novel Digital Light Projection
ERI:通过新型数字光投影增材制造高浓度碳化硅颗粒的聚合物基复合材料
  • 批准号:
    2301462
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Additive manufacturing of a novel low-cost titanium alloy: enhancement of processing and properties for aerospace applications
新型低成本钛合金的增材制造:增强航空航天应用的加工和性能
  • 批准号:
    531108-2018
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了