Online State Estimation of Fine Powder Processes by the Adaptive Extended Kalman Filter

通过自适应扩展卡尔曼滤波器对细粉过程进行在线状态估计

基本信息

  • 批准号:
    03650516
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

The switching mode enhanced extended Kalman(SEEK) filter algorithm has been developed to estimate strongly nonlinear and noisy dynamical systems. The SEEK algorithm is based on optimally selecting the observation matrix so as to ensure the convergence of the estimation error covariance matrix is maximized. The basic concept has been outlined using a second order linear system and successfully verified by numerical demonstrations. Then the SEEK filter algorithm has been applied to estimate the Lorenz system with superimposed Gaussian white noise. The SEEK filter has returned good estimates of this chaotic system though the conventional extended Kalman filter absolutely failed to obtain accurate state estimates. The optimization algorithm for selecting the optimal sampling mode has been developed and applied to estimate the Lorenz system with a switched parameter. We regard this demonstration as convincing evidence of the power of the SEEK filter as an accurate estimator of the state variables even for strongly nonlinear systems such as this particular relization of the Lorenz system. The SEEK algorithm has also been applied to identify evolving large structure in flows accompanied with micro-structure diffusion in a discrete vortex simulation. The SEEK filter achieved accurate estimation even in a high level noisy environment. Then only diagonal elements of the Jacobian matrix have been found to be dominant in applying the SEEK algorithm to the discrete vortex simulation. This evidence should be quite useful to reduce the calculation time in a large code estimation. Then, from the viewpoint of applicability of Kalman filtering technology to control practices, therefore, control performances have been compared among the cases of conventional PID, LQG and H-infinity controls, supposing a typical transfer function of the control object,which is certainly common to powder processes.
开关模式增强型扩展卡尔曼滤波器(SEEK)算法已被开发用于估计强非线性和噪声动态系统。SEEK算法基于最优选择观测矩阵,以保证估计误差协方差阵的收敛性最大化。的基本概念已概述使用二阶线性系统,并成功地验证了数值演示。在此基础上,应用SEEK滤波算法对叠加高斯白色噪声的Lorenz系统进行了估计。SEEK滤波器返回了很好的估计,这个混沌系统,虽然传统的扩展卡尔曼滤波器绝对不能获得准确的状态估计。提出了选择最佳采样模式的优化算法,并应用于参数切换的Lorenz系统的估计。我们认为这个演示作为令人信服的证据的电源的SEEK过滤器作为一个准确的估计的状态变量,即使是强非线性系统,如这种特殊的实现的洛伦兹系统。SEEK算法也已被应用于识别演变的大结构在流动中伴随着微结构扩散的离散涡模拟。即使在高噪音环境中,SEEK滤波器也能实现准确的估计。然后,雅可比矩阵的对角元素已被发现是占主导地位的SEEK算法应用于离散涡模拟。这一证据对于减少大型代码估算中的计算时间非常有用。然后,从卡尔曼滤波技术在控制实践中的适用性的观点出发,假设控制对象具有典型的传递函数,这对于粉末过程是常见的,因此,在常规PID、LQG和H ∞控制的情况下,比较了控制性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKANO Yasuhiko其他文献

OKANO Yasuhiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKANO Yasuhiko', 18)}}的其他基金

Study of the Optimal Designing System in Resources Development Projects
资源开发项目优化设计体系研究
  • 批准号:
    05452316
  • 财政年份:
    1993
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326341
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229074
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
A Study on Learner State Estimation and Learner Experience Based on the Integration of Knowledge Structure and Quantitative Model
基于知识结构与定量模型融合的学习者状态估计与学习者体验研究
  • 批准号:
    23K02749
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229073
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229075
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326340
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Cognitive State Estimation by Pupil Diameter in a Real Environment
真实环境中瞳孔直径的认知状态估计
  • 批准号:
    23KK0183
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了