Chaotic Phenomena and Their Engineering Relevance
混沌现象及其工程相关性
基本信息
- 批准号:05044091
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for international Scientific Research
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of research is to understand the behavior of nonlinear dynamical systems using theory and extensive numerical simulation. Prototype models including second-order oscillators have been selected to include some previously neglected but essential properties of real physical and engineering systems. Basic insight is gained by avoided unnecessary camplications.A comprehensive review and classification of hifurcations involving one parameter was completed. Safe, explosive and dangerous types were distinguished, and related to phenomena of fundamental concern in applications : continuity or discontinuity of responses, hysteresis, intermittency and indeterminate outcomes. Study of escape from potential wells was extended to a wide range of volues of the damping coefficient. The close connection between optimal escape and resonance was confirmed ; subtle but important changes in bifurcation patterns were discovered, and their significance for experimental studies was clarified.We have considered the nonlinear dynamical system with time delay described by the Minorsky equation (see Minorsky, J.Appl.Phys, Vol.19, 1948), which he introduced during his studies of active ship stabilization. Differential equations with a time delay, sometimes called differential-difference equations, have an infinite dimensional phase space. The global features of the basin boundaries are not easily grasped, but they have great practical importance.In earlier work, we made some progress by making 'carpet bombing' experiments from a grid of starts in one cross-section of the phase space : but now we have focused attention on the unstable basic sets governing the basin boundaries, which we have located numerically using the straddle orbit technique. This approach gives much more insight into basin structure than carpet bombing ; for example, a stability index involving distance from attracter to unstable basic set may be computed. This will be pursued in future research.
研究的目的是利用理论和广泛的数值模拟来理解非线性动力系统的行为。包括二阶振子的原型模型已被选定,包括一些以前被忽视的,但真实的物理和工程系统的基本属性。通过避免不必要的复杂性,获得了基本的认识。对安全、爆炸和危险类型进行了区分,并与应用中的基本关切现象有关:反应的连续性或不连续性、滞后性、不稳定性和不确定的结果。将势威尔斯逃逸的研究扩展到阻尼系数的宽范围。最优逃逸和共振之间的密切联系被证实;分叉模式的微妙但重要的变化被发现,并阐明了它们对实验研究的意义。我们考虑了由Minorsky方程(见Minorsky,J.Appl.Phys,Vol.19,1948)描述的具有时滞的非线性动力系统,他在主动船舶稳定性研究中引入了该方程。具有时滞的微分方程,有时称为微分差分方程,具有无限维的相空间。盆地边界的全局特征不易把握,但它们具有很大的实际意义。在早期的工作中,我们通过在相空间的一个横截面上从网格开始进行“地毯式轰炸”实验取得了一些进展:但现在我们已经将注意力集中在控制盆地边界的不稳定基本集上,我们已经使用跨轨技术对它们进行了数值定位。这种方法比地毯式轰炸对盆地结构有更多的了解;例如,可以计算涉及从吸引子到不稳定基本集的距离的稳定性指数。这将在今后的研究中继续进行。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.M.T.Thompson,H.B.Stewart and Y.Ueda: "Safe,Explosive,and Dangerous Bifurcations in Dissipative Dynamical Systems" Physical Review E. Vol.49 No.1. (1994)
J.M.T.Thompson、H.B.Stewart 和 Y.Ueda:“耗散动力系统中的安全、爆炸和危险分岔”物理评论 E. 第 49 卷第 1 期。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.B.Stewart,J.M.T.Thompson,Y.Ueda and A.N.Lansbury: "Optimal Escape from Potential Wells-Patterns of Regular and Chaotic Bifurcation" (未定).
H.B.Stewart、J.M.T.Thompson、Y.Ueda 和 A.N.Lansbury:“潜在井的最佳逃逸 - 规则和混沌分叉模式”(TBD)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ito, K.Harada and Y.Ueda: "Self-generated chaos in a spatially extended system with two types of instabilities" Proc. 1993 Int. Symp. Nonlinear Theory and Its Applications. 3. 1015-1018 (1993)
H.Ito、K.Harada 和 Y.Ueda:“具有两种不稳定性的空间扩展系统中的自生混沌”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
喜多敏博,野尻引輔,上田〓亮: "電力系統に生じるカオス的動揺現象" 電気学会電力技術研究会資料. PE93-2. 7-16 (1993)
Toshihiro Kita、Hikisuke Nojiri、Ryo Ueda:“电力系统中发生的混沌振荡现象”IEEJ 电力技术研究组材料。 7-16 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ueda,H.Ohta and H.B.Stewart: "Bifurcations in a System Described by a Nonlinear Differential Equation with Delay" Chaos,American Institute of Physics. Vol.4 No.1. (1994)
Y.Ueda、H.Ohta 和 H.B.Stewart:“由带有延迟的非线性微分方程描述的系统中的分叉”混沌,美国物理研究所。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEDA Yoshisuke其他文献
UEDA Yoshisuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEDA Yoshisuke', 18)}}的其他基金
All inclusive synchronization phenomena-based studies on transmissions of energies and information in coupled systems of electric circuits
基于全包同步现象的电路耦合系统中能量和信息传输的研究
- 批准号:
12834006 - 财政年份:2000
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental Research on Transient Behavior of Power system and Criterion for Detecting Onset of Instability
电力系统暂态行为及失稳发生判据的基础研究
- 批准号:
09650441 - 财政年份:1997
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chaotic Hhenomena and Their Engineering Relevance
混沌现象及其工程相关性
- 批准号:
04044084 - 财政年份:1992
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for international Scientific Research
Chaotic Phenomena and Their Engineering Relevance
混沌现象及其工程相关性
- 批准号:
03044084 - 财政年份:1991
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似海外基金
mCDR 2023: Multiscale observing system simulation experiments for iron fertilization in the Southern Ocean, Equatorial Pacific, and Northeast Pacific
mCDR 2023:南大洋、赤道太平洋和东北太平洋铁肥化多尺度观测系统模拟实验
- 批准号:
2333334 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Study on chemical evolution by simulation experiments regarding the plasma processes and hydrothermal conditions with minerals under the Hadean Earth environments
冥宙地球环境下矿物等离子体过程和热液条件模拟实验研究化学演化
- 批准号:
19H02017 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evaluation of Policies for Promoting Energy with Zero Marginal Cost by Using Simulation Experiments
利用模拟实验评估零边际成本能源推广政策
- 批准号:
17KT0035 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green Simulation: A Methodology for Reusing the Output of Past Computer Simulation Experiments
绿色仿真:重用过去计算机仿真实验输出的方法
- 批准号:
1634982 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
GREENHOUSE: Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments
GREENHOUSE:通过新颖的观测层次和升级模拟实验生成区域排放估算
- 批准号:
NE/K002554/1 - 财政年份:2013
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
Simulation experiments on failure of Zircaloy cladding due to a coolant loss, and oxidation behaviors of Zircaloy at temperatures through the transition temperatures of ZrO2
由于冷却剂损失而导致的锆合金包壳失效的模拟实验以及锆合金在 ZrO2 转变温度范围内的氧化行为
- 批准号:
25289236 - 财政年份:2013
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments (GREENHOUSE)
通过新颖的观测层次结构和大规模模拟实验生成区域排放估算(GREENHOUSE)
- 批准号:
NE/K002619/1 - 财政年份:2013
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
GREENHOUSE - Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments
GREENHOUSE - 通过新颖的观测层次和升级模拟实验生成区域排放估算
- 批准号:
NE/K002538/1 - 财政年份:2013
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
GREENHOUSE: Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments
GREENHOUSE:通过新颖的观测层次和升级模拟实验生成区域排放估算
- 批准号:
NE/K002481/1 - 财政年份:2013
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments
通过新颖的观测层次结构和大规模模拟实验生成区域排放估算
- 批准号:
NE/K002503/1 - 财政年份:2013
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant