All inclusive synchronization phenomena-based studies on transmissions of energies and information in coupled systems of electric circuits
基于全包同步现象的电路耦合系统中能量和信息传输的研究
基本信息
- 批准号:12834006
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study we have clarified synchronizing phenomena in the wide sense, which include quasi-periodic and chaotic synchronizations in various nonlinear systems.First, we returned to the context of nonlinear oscillation theory in which we began, in 1961, our experience with chaotic behavior. This context involves the systems of forced self-oscillators arising in electronic circuits. We combined earlier examples into a simple mixed system, and obtained information on the bifurcation diagram of this system. In particular, the parameter regime of the broken-egg chaotic attractor is mapped.Next, on behalf of the analysis on quasi-periodic oscillation and chaotic behavior in coupled electric system, a coupled magneto-elastic beam system, which has elastically continuous and magnetically discrete characteristics, was proposed. It made us possible to examine the physical phenomenon experimentally and to obtain the appropriate mathematical model. The results obtained by one of members showed the followings :1) The long wave length phenomena cannot be found in the finite dimensional system. Therefore, the partial differential equation is not physically appropriate to describe the short wave length phenomena.2) The dynamical behavior in the finite element nonlinear coupled systems, which imply between partial differential equations and ordinary differential equations, can be described by difference-differential equations qualitatively based on the experimental results on the synchronous phenomenon and the wave propagation.3) The unstable standing wave has an important role to realize the onset of wave propagation. The high dimensional heteroclinic structure of manifolds is substantial for the onset. These results give us the great knowledge on the relation between the phenomena in physical models and in the mathematical models.
在本研究中,我们阐明了广义上的同步现象,包括各种非线性系统中的准周期和混沌同步。首先,我们回到非线性振荡理论的背景,在1961年,我们开始研究混沌行为。本文涉及电子电路中产生的强迫自振系统。我们将前面的例子组合成一个简单的混合系统,并获得了该系统的分岔图信息。特别地,对破蛋混沌吸引子的参数区进行了映射。其次,在分析耦合电系统的准周期振荡和混沌行为的基础上,提出了一种具有弹性连续和磁离散特性的耦合磁弹性梁系统。它使我们有可能用实验来检验物理现象,并得到适当的数学模型。其中一名成员的研究结果表明:1)有限维系统中不存在长波现象。因此,偏微分方程在物理上不适合描述短波现象。2)基于同步现象和波传播的实验结果,用微分-微分方程定性地描述了介于偏微分方程和常微分方程之间的有限元非线性耦合系统的动力学行为。3)不稳定驻波对实现波的传播起着重要作用。流形的高维异斜结构是重要的开始。这些结果使我们对物理模型中的现象和数学模型中的现象之间的关系有了很大的认识。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshisuke Ueda: "The Road to Chaos-II"Aerial Press, Inc.POB 1360, Santa Cruz, CA 95061 ISBN 0-942344-23-5. 255 (2001)
Yoshisuke Ueda:《混沌之路 II》Aerial Press, Inc.POB 1360, Santa Cruz, CA 95061 ISBN 0-942344-23-5。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hirofumi Ohta and Yoshisuke Ueda: "Unstable limit cycles in an electric power system and basin boundary of voltage collapse"Chaos Solitons and Fractals. 12.12. 159-172 (2001)
Hirofumi Ohta 和 Yoshisuke Ueda:“电力系统中的不稳定极限环和电压崩溃的盆地边界”混沌孤子和分形。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hidetaka Ito and Yoshisuke Ueda: "Emergence of a multidomain regime and spatiotemporal chaos in Gunn diodes under impact ionization conditions"Physics Letters A. 281・3. 312-317 (2001)
伊藤英隆和上田义介:“碰撞电离条件下耿氏二极管中多域状态和时空混沌的出现”《物理快报》A. 281・3 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
高安秀樹,高安美佐子: "経済・情報・生命の臨界ゆらぎ"ダイヤモンド社. 252 (2000)
Hideki Takayasu、Misako Takayasu:“经济、信息和生活的关键波动” Diamond Inc. 252 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsuro Endo: "Explosion of strange attractors and crisis-induced intermittency from a forced phase-locked loopcircuit : Theory and experiments"International Journal of Bifurcation and Chaos. 10・4. 891-912 (2000)
远藤哲郎:“强制锁相环电路中奇异吸引子的爆炸和危机引起的间歇性:理论与实验”国际分岔与混沌杂志 10・4(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEDA Yoshisuke其他文献
UEDA Yoshisuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEDA Yoshisuke', 18)}}的其他基金
Fundamental Research on Transient Behavior of Power system and Criterion for Detecting Onset of Instability
电力系统暂态行为及失稳发生判据的基础研究
- 批准号:
09650441 - 财政年份:1997
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chaotic Phenomena and Their Engineering Relevance
混沌现象及其工程相关性
- 批准号:
05044091 - 财政年份:1993
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for international Scientific Research
Chaotic Hhenomena and Their Engineering Relevance
混沌现象及其工程相关性
- 批准号:
04044084 - 财政年份:1992
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for international Scientific Research
Chaotic Phenomena and Their Engineering Relevance
混沌现象及其工程相关性
- 批准号:
03044084 - 财政年份:1991
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似国自然基金
偶偶核集体带DeltaI=4bifurcation现象和拉伸效应的机制
- 批准号:19875020
- 批准年份:1998
- 资助金额:7.5 万元
- 项目类别:面上项目
化学反应器设计中的分支(Bifurcation)问题
- 批准号:28670493
- 批准年份:1986
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Mechanism of grazing bifurcation and mass unification in two-mass collisional vibration systems
二质量碰撞振动系统中的掠分岔与质量统一机制
- 批准号:
23K13353 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic bifurcation of patterns through spatio-temporal heterogeneity
通过时空异质性动态分叉模式
- 批准号:
2307650 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
- 批准号:
23H01295 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
- 批准号:
10810399 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
The clarification of reaction path bifurcation mechanisms affected by nuclear quantum effects
核量子效应影响的反应路径分岔机制的阐明
- 批准号:
23K04675 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
- 批准号:
22K03442 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Grants Program - Individual
Control of Carotid Artery Bifurcation Blood Flow
颈动脉分叉血流的控制
- 批准号:
575625-2022 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10373696 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Grants Program - Individual