Deciphering the molecular pathways and codeχ-specificity of stomatal closure – from model plants to crops
破译从模型植物到作物气孔关闭的分子途径和密码特异性
基本信息
- 批准号:525793193
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stomata are tiny pores on the undersides of leaves that allow for CO2 uptake and transpiration but also provide a potential entry point for pathogenic microbes. Therefore, guard cells, which regulate the size of the stomatal aperture, respond to abiotic and biotic stresses, such as drought and pathogen infestation. Microbial plant pathogens that may enter via the stomata include bacteria, oomycetes, and fungi, which vary significantly in their pathogenicity to different plant species. Various external and internal signals must be integrated because although stomatal closure prevents pathogen entry and water loss, the plant's metabolism is also reduced by the lack of gas exchange. Adverse effects include increased photorespiration and tissue overheating due to a lack of transpiration. Nevertheless, applying a stomatal closure agonist that induces a uniform stomatal closure could combat pathogen infestations and protect plants during short drought periods. Artificial stomatal closure can be induced, for example, by chitosan. Chitosan is a derivative of chitin, a well-known microorganism-associated molecular pattern (MAMP), which is recognized by plants and induces an immune response. There are two advantages of chitosan over chitin. First, chitosan has good solubility in water and weak acids and can be used more efficiently in solution. Second, and more importantly, we found that the chitosan perception in guard cells differs from chitin perception, which might allow targeting stomatal closure with defined chitosans without triggering unnecessary plant defense mechanisms that reduce plant fitness. Although chitosan is already used in agriculture, the exact mechanisms of chitosan perception and subsequent signaling pathways are largely unknown. This makes it challenging to synthesize specific biologically active chitosans. The main objective of this project is to identify specific chitosans that can enhance plant resilience to drought and pathogen attacks. To achieve this, a comprehensive understanding of the chitosan perception mechanism, the specificity of chitosan receptors for different chitosan codes, and the underlying signaling pathways are required. This research will provide a deeper understanding of chitosan perception and the chitosan-mediated signaling pathways in plants and help in the development of new strategies for crop improvement.
气孔是叶片下侧的微小孔隙,允许CO2吸收和蒸腾,但也为病原微生物提供了潜在的入口。因此,保卫细胞,调节气孔孔径的大小,响应非生物和生物胁迫,如干旱和病原体侵染。可通过气孔进入的微生物植物病原体包括细菌、卵菌和真菌,它们对不同植物物种的致病性显著不同。必须整合各种外部和内部信号,因为虽然气孔关闭防止病原体进入和水分流失,但植物的新陈代谢也因缺乏气体交换而减少。不利影响包括增加光呼吸和组织过热,由于缺乏蒸腾作用。然而,应用气孔关闭激动剂,诱导一个统一的气孔关闭可以打击病原体的侵扰,并在短期干旱期间保护植物。人工气孔关闭可以例如通过壳聚糖诱导。壳聚糖是几丁质的衍生物,几丁质是一种众所周知的微生物相关分子模式(MAMP),其被植物识别并诱导免疫应答。壳聚糖与甲壳素相比有两个优点。首先,壳聚糖在水和弱酸中具有良好的溶解性,并且可以在溶液中更有效地使用。其次,更重要的是,我们发现保卫细胞中的壳聚糖感知与几丁质感知不同,这可能允许用定义的壳聚糖靶向气孔关闭,而不会触发降低植物适应性的不必要的植物防御机制。虽然壳聚糖已经在农业中使用,但壳聚糖感知的确切机制和随后的信号传导途径在很大程度上是未知的。这使得合成特定的生物活性壳聚糖具有挑战性。该项目的主要目标是确定特定的壳聚糖,可以提高植物对干旱和病原体攻击的抵抗力。为了实现这一目标,需要全面了解壳聚糖的感知机制,壳聚糖受体对不同壳聚糖编码的特异性,以及潜在的信号传导途径。这项研究将提供更深入的了解壳聚糖的感知和壳聚糖介导的信号转导途径在植物中,并有助于作物改良的新策略的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Maik Böhmer其他文献
Professor Dr. Maik Böhmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Maik Böhmer', 18)}}的其他基金
Modulation of ABA signaling by Ca2+-dependent posttranslational regulation
通过 Ca2+ 依赖性翻译后调节调节 ABA 信号传导
- 批准号:
210911670 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Analyses and Identification of molecular mechanisms underlying Calcium-sensor function and priming in guard cells
分析和鉴定钙传感器功能和保卫细胞启动的分子机制
- 批准号:
42635602 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
- 批准号:82372073
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
- 批准号:82373145
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
- 批准号:82304565
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
- 批准号:31900545
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
- 批准号:
10676016 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering epigenetically-regulated pathways to improve targeted therapy for invasion and metastasis in head and neck cancer
破译表观遗传调控途径以改善头颈癌侵袭和转移的靶向治疗
- 批准号:
10650527 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Project 2: Deciphering the Dynamic Evolution of the Tumor-Immune Interface
项目2:破译肿瘤免疫界面的动态演化
- 批准号:
10729276 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering cellular and molecular pathways controlling invasive trophoblast differentiation
破译控制侵袭性滋养层分化的细胞和分子途径
- 批准号:
RGPIN-2020-05378 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deciphering the progression and regulation of human translesion DNA synthesis
破译人类跨损伤 DNA 合成的进展和调节
- 批准号:
10669748 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering cellular and molecular pathways controlling invasive trophoblast differentiation
破译控制侵袭性滋养层分化的细胞和分子途径
- 批准号:
RGPAS-2020-00013 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Deciphering mechanisms for olfactory receptor choice in single cells
破译单细胞嗅觉受体选择的机制
- 批准号:
10700027 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering mechanisms for olfactory receptor choice in single cells
破译单细胞嗅觉受体选择的机制
- 批准号:
10606256 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deciphering cellular and molecular pathways controlling invasive trophoblast differentiation
破译控制侵袭性滋养层分化的细胞和分子途径
- 批准号:
RGPIN-2020-05378 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deciphering cellular and molecular pathways controlling invasive trophoblast differentiation
破译控制侵袭性滋养层分化的细胞和分子途径
- 批准号:
RGPAS-2020-00013 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements