Deciphering the progression and regulation of human translesion DNA synthesis
破译人类跨损伤 DNA 合成的进展和调节
基本信息
- 批准号:10669748
- 负责人:
- 金额:$ 39.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAreaBiochemistryBiologicalBiophysicsCancer EtiologyCell DeathCell SurvivalCellsChromosomal RearrangementClosure by clampCodeComplexCritical PathwaysDNA DamageDNA RepairDNA Replication DamageDNA Replication FactorDNA biosynthesisDNA-Directed DNA PolymeraseDiseaseEnvironmentEventExposure toFibroblast Growth FactorFunctional disorderGeneticGenomeGoalsHealthHumanHuman ActivitiesHuman GenomeKineticsKnowledgeLinkMalignant NeoplasmsModificationMolecularMolecular BiologyMonoubiquitinationMutagenesisPathway interactionsPropertyRegulationResearchResearch ProposalsSiteSlideTechniquescancer cellcancer therapycarcinogenesischemotherapydesignhuman DNA damageinterestprogramsrecruit
项目摘要
Project Summary/Abstract
The overarching goal of my research program is to understand how the human genome is faithfully
replicated when it is constantly damaged by covalent modifications that can alter its coding properties. A focus
is on translesion DNA synthesis (TLS), the predominant DNA damage tolerance (DDT) pathway utilized in
humans to replicate damaged DNA. TLS utilizes specialized DNA polymerases that can accommodate an
array of DNA damages, albeit with lowered fidelities, and promotes cell survival in the face of DNA damage by
allowing replication of a damaged genome to continue. However, tight regulation is critical as aberrant TLS can
selectively propagate cells with increased mutagenesis and chromosomal rearrangements, which can lead to
cancer. Furthermore, because TLS promotes cell survival after exposure to DNA damaging agents, aberrant
TLS can also afford cancer cells the ability to overcome common chemotherapies that aim to trigger cell death
by acutely damaging DNA. Hence, TLS is a promising candidate for targeted cancer co-therapy. Despite the
established links between human health and TLS, the progression and regulation of TLS is unclear and many
key gaps persist in our fundamental knowledge that cloud our understanding of the contribution of TLS to
genetic inheritance and carcinogenesis. For example, human DDT can occur by at least three pathways but
what is the interplay between TLS and other DDT pathways? My long-standing interests and vast expertise in
human DNA damage repair and replication and my established ability to utilize a multi-faceted approach
integrating molecular biology, biochemistry, and biophysics provide a unique opportunity to fill these gaps. This
proposal will address the progression and regulation of TLS by tackling two broad areas that are each a
cornerstone of our fundamental understanding of TLS and DDT in general; 1) Activation of TLS and; 2) The
interplay between DDT pathways. To do so, we design and apply unique, quantitative approaches that utilize
kinetic techniques and can be adapted to many biological scenarios.
The PCNA sliding clamp is an essential DNA replication factor and is monoubiquitinated at sites of DNA
damage by the Rad6(Rad18)2 complex. PCNA monoubiquitination is imperative for human TLS and activates
this critical pathway by recruiting TLS factors. Area 1 will investigate how the activity of the human
Rad6(Rad18)2 complex is regulated to efficiently monoubiquitinate PCNA at DNA damage sites, activating
TLS. Human DDT can occur by at least three pathways including TLS and all emanate from a common
intermediate. Area 2 will investigate the interplay between TLS and other DDT pathways and decipher
functional relationships between key events in each pathway. This proposal investigates TLS in broad contexts
that consider the complexities and dynamics of cellular environments and will significantly advance our
fundamental understanding of how the human genome is faithfully replicated in the face of DNA damage and
inspire new avenues of research in cancer etiology and treatment.
项目摘要/摘要
我的研究计划的首要目标是了解人类基因组是如何忠实地
当它被可能改变其编码性质的共价修饰不断破坏时复制。一个焦点
是关于跨损伤DNA合成(TLS),这是主要的DNA损伤耐受(DDT)途径,在
人类复制受损的DNA。TLS利用专门的DNA聚合酶,可以适应
一系列DNA损伤,尽管保真度较低,并通过以下方式促进细胞存活
使受损基因组的复制得以继续。然而,严格的监管是至关重要的,因为异常的TLS可能会
选择性地繁殖具有更多突变和染色体重排的细胞,这可能导致
癌症。此外,由于TLS在暴露于DNA损伤剂后促进细胞存活,异常
TLS还可以为癌细胞提供克服旨在引发细胞死亡的常见化疗药物的能力
通过严重破坏DNA。因此,TLS是靶向癌症联合治疗的一个很有前途的候选者。尽管
在人类健康和TLS之间建立了联系,TLS的进展和调控尚不清楚,有许多
我们的基础知识中仍然存在着关键的差距,这些差距影响了我们对TLS对
遗传和致癌。例如,人类滴滴涕可以通过至少三种途径发生,但
TLS和其他滴滴涕途径之间的相互作用是什么?我的长期兴趣和丰富的专业知识
人类DNA损伤修复和复制,以及我利用多方面方法的既定能力
分子生物学、生物化学和生物物理学的结合为填补这些空白提供了独特的机会。这
提案将通过处理两个广泛的领域来解决TLS的进展和监管问题,这两个领域分别是
我们对TLS和DDT的基本理解的基石;1)TLS的激活;2)TLS和
滴滴涕途径之间的相互作用。为了做到这一点,我们设计并应用了独特的量化方法,利用
动力学技术,可适用于许多生物学场景。
增殖细胞核抗原滑动夹是一种重要的DNA复制因子,在DNA的位点上是单核苷酸的
受Rad6(Rad18)2络合物的破坏。增殖细胞核抗原单素化是人类TLS的必由之路,并激活
这一关键途径是通过招募TLS因子实现的。第一区将调查人类的活动是如何
Rad6(Rad18)2复合体被调节为在DNA损伤部位高效地单核苷酸激活增殖细胞核抗原,激活
TLS。人类滴滴涕至少可以通过三种途径发生,包括TLS,并且都来自共同的
中级的。区域2将调查TLS与其他滴滴涕途径之间的相互作用并破译
每条通路中关键事件之间的功能关系。本提案在广泛的背景下对TLS进行调查
考虑到蜂窝环境的复杂性和动态性,并将显著推动我们的
基本了解人类基因组是如何在DNA损伤和
启发癌症病因学和治疗研究的新途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Hedglin其他文献
Mark Hedglin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Hedglin', 18)}}的其他基金
Polymerase Switching During Translesion DNA Synthesis within the Human System
人体系统内跨损伤 DNA 合成过程中的聚合酶转换
- 批准号:
8254525 - 财政年份:2012
- 资助金额:
$ 39.43万 - 项目类别:
Polymerase Switching During Translesion DNA Synthesis within the Human System
人体系统内跨损伤 DNA 合成过程中的聚合酶转换
- 批准号:
8529191 - 财政年份:2012
- 资助金额:
$ 39.43万 - 项目类别:
Polymerase Switching During Translesion DNA Synthesis within the Human System
人体系统内跨损伤 DNA 合成过程中的聚合酶转换
- 批准号:
8716697 - 财政年份:2012
- 资助金额:
$ 39.43万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant














{{item.name}}会员




