The Mechanisms of Size, Shape, and Facets Control in Colloidal SnTe Nanostructures for Advanced Optoelectronics
用于先进光电子学的胶体 SnTe 纳米结构的尺寸、形状和刻面控制机制
基本信息
- 批准号:525993990
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Low-dimensional semiconductor nanomaterials such as tin telluride (SnTe) can adopt advantages based on the quantum confinement effect, suggesting great potential for heat-electricity conversion. As a IV-VI narrow bandgap semiconductor (0.18 eV, bulk), SnTe exhibits an intrinsically high charge carrier concentration, which results in a relatively low Seebeck coefficient, but optimization of the material through doping and alloying offers great promise for thermoelectric applications of this material. As the first predicted topological crystalline insulators, SnTe has been studied to explore the physics and applications of the surface states both theoretically and experimentally. In addition, SnTe exhibits exotic electronic properties such as superconductivity and ferromagnetism that make it a promising material for the use in high-performance thermoelectric materials, phase-change materials, infrared emission and detection materials, photovoltaic devices as well as ferroelectrics for a wide range of applications. In this project, the applicant intends to explore new approaches to control the size and shape of low-dimensional SnTe nanomaterials to improve the optical anisotropy, tunable electronic effects, unique optoelectronic behavior, and enhance sensing capabilities of SnTe nanomaterials. Controlling the particle size, shape and facets is still a challenge for the colloidal synthesis of SnTe nanomaterials. In addition, control of kinetic factors and the introduction of chelating agents in the medium decide the formation of nano-systems with phase purity, narrow size distribution and shapes. More importantly, to the applicant’s knowledge, no clear and systematic trends linking SnTe to their optical or optoelectronic properties have been established. This research project will focus on the relationship between the morphology and optoelectronic properties of SnTe nanocrystals. In terms of synthesis, the physical (e.g., reaction temperature, heating time, etc.) and chemical (e.g., type of ligand, nature of the solvent, etc.) parameters that affect the morphology of SnTe nanoparticles will be studied in detail. The proposed project also focuses on the factors that ultimately affect the shape of nanoparticles (e.g., electronic structure, facet formation, etc.) and the electric transport properties of the colloidal SnTe with different nanostructures to gain a deep understanding of the connection between the different morphologies and their optic or optoelectronic properties. From the fundamental research point of view, the project will help to understand the basic connection between SnTe nanostructures with their optoelectronic properties. The results of this study will benefit the controllable synthesis of SnTe with defined structures as well as the exploration of novel optic or optoelectronic devices and topological crystalline insulators.
低维半导体纳米材料,如碲化锡(SnTe),可以采用基于量子限制效应的优势,这表明了巨大的潜力,热电转换。作为IV-VI窄带隙半导体(0.18 eV,体),SnTe表现出固有的高电荷载流子浓度,这导致相对低的塞贝克系数,但是通过掺杂和合金化对材料的优化为这种材料的热电应用提供了很大的希望。作为第一个被预测的拓扑晶体绝缘体,SnTe的研究从理论和实验两方面探索了其表面态的物理和应用。此外,SnTe还具有超导性和铁磁性等独特的电子性质,使其成为一种有前途的材料,可用于高性能热电材料、相变材料、红外发射和检测材料、光伏器件以及铁电体,具有广泛的应用。在本项目中,申请人打算探索新的方法来控制低维SnTe纳米材料的尺寸和形状,以改善SnTe纳米材料的光学各向异性,可调谐电子效应,独特的光电行为,并增强传感能力。控制SnTe纳米材料的粒径、形状和晶面仍然是胶体合成的一个挑战。此外,控制动力学因素和在介质中引入螯合剂决定了形成具有相纯度、窄尺寸分布和形状的纳米体系。更重要的是,据申请人所知,尚未建立将SnTe与其光学或光电性质联系起来的明确和系统的趋势。本研究计画将着重探讨碲化锡奈米晶体之形貌与光电性质之间的关系。在合成方面,物理(例如,反应温度、加热时间等)和化学(例如,配体的类型、溶剂的性质等)将详细研究影响SnTe纳米颗粒形态的参数。拟议的项目还关注最终影响纳米颗粒形状的因素(例如,电子结构、刻面形成等)以及不同纳米结构的胶体SnTe的电输运性质,以深入了解不同形貌与其光学或光电性质之间的联系。从基础研究的角度来看,该项目将有助于理解SnTe纳米结构与其光电性能之间的基本联系。本研究的结果将有利于具有特定结构的SnTe的可控合成以及新型光学或光电器件和拓扑晶体绝缘体的探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Fagui He其他文献
Dr. Fagui He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向下一代LCD显示技术应用的氮化物多量子阱结构绿光mini-size LED性能研究
- 批准号:61904158
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidation of molecular mechanisms regulating organ size and shape by using medaka
利用青鳉阐明调节器官大小和形状的分子机制
- 批准号:
26860197 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identification of Mechanisms Regulating Muscle Size and Shape
调节肌肉大小和形状的机制的识别
- 批准号:
8040998 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Identification of Mechanisms Regulating Muscle Size and Shape
调节肌肉大小和形状的机制的识别
- 批准号:
7809546 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Identification of Mechanisms Regulating Muscle Size and Shape
调节肌肉大小和形状的机制的识别
- 批准号:
7675546 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Neural mechanisms of size and shape perception in somatosensory cortex
体感皮层大小和形状感知的神经机制
- 批准号:
6595036 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Neural mechanisms of size and shape perception in somatosensory cortex
体感皮层大小和形状感知的神经机制
- 批准号:
6480805 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Neural mechanisms of size and shape perception in somatosensory cortex
体感皮层大小和形状感知的神经机制
- 批准号:
6326017 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Neural mechanisms of size and shape perception in somatosensory cortex
体感皮层大小和形状感知的神经机制
- 批准号:
6226540 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Mechanisms of Size- and Shape-Determination in Supramolecular Structures by Genetic Information
通过遗传信息确定超分子结构的尺寸和形状的机制
- 批准号:
60580206 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Grant-in-Aid for General Scientific Research (C)