General study of topology
拓扑学一般研究
基本信息
- 批准号:06302004
- 负责人:
- 金额:$ 12.8万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first big achievement in the study of topology was the classification theory of manifolds by Thom, Milnor, Smale et al in 1960's. These researches were more or less properly topological ones in their subjects or methods, but in 70's various attempts to relate those results to other fields of mathematics were made and the Donaldson theory in 4 dim manifolds proved such attempts would be successful.In our research program, most of research groups in topology studied actively not being in the traditional fields. Yukio Matsumoto and his group studied the Seiberg-Witten theory and gave a new aspect in the theory of 4-dim manifolds. Groups of dynamical system, theory of singularities and foliation theory made not only traditional researches but also made cooperative study on some themes like topological study of algebraic variety or symplectic geometry, and in the theory of transformation groups good results on the action of algebraic groups were obtained. In the homotopy theory studies of new direction, for example, study of relations between elliptic cohomology and number theory or homotopical study of certain moduli spaces have been done. Kenji Fukaya and his group are working in a field overlapping most fields mentioned above, and have obtained remarkable results about the topological field theory, Arnold conjecture and Novikov conjecture. The group of knot theory, one of the most active group in topology, obtained numbers of results using a new method of mathematical physics as well as traditional methods. They will publish their results at the international conference on knot theory in Tokyo held in July 1996.
拓扑学研究的第一个重大成果是Thom,Milnor,Smale等人在20世纪60年代提出的流形分类理论。这些研究或多或少是正确的拓扑的主题或方法,但在70年代的各种尝试,这些结果与其他领域的数学和唐纳森理论在四维流形证明这样的尝试将是成功的。Yukio松本等人对Seiberg-Witten理论进行了深入的研究,在四维流形理论中开辟了一个新的领域。动力系统群、奇点理论和叶理理论在代数簇的拓扑研究、辛几何等方面不仅进行了传统的研究,而且还进行了合作研究,在变换群理论中对代数群的作用也取得了很好的结果。同伦理论研究的新方向,如椭圆上同调与数论关系的研究或某些模空间的同伦研究。福谷和他的研究小组所从事的研究领域与上述大多数领域重叠,并在拓扑场论、Arnold猜想和Novikov猜想等方面取得了令人瞩目的成果。纽结理论群是拓扑学中最活跃的群之一,它在传统方法的基础上,又用一种新的数学物理方法得到了许多结果。他们将于1996年7月在东京举行的国际纽结理论会议上发表他们的研究结果。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KAWAUCHI,Akio: "Splitting a 4-manifold with infinite cyclic fundamental group" Osaka Journal of Mathematics. Vol.31. 489-495 (1994)
川内明夫:“分裂具有无限循环基本群的 4 流形”大阪数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤久男: "Chaos of continuum-wise expansive homeomorphisms-and dynamical properties of sensitive maps of graphs" Pacific Journal of Mathematics. (予定).
Hisao Kato:“连续体扩展同胚的混沌和图敏感图的动力学特性”《太平洋数学杂志》(计划中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
OKA,Mutuo: "On resolution complexity of plane curves" Kodai Mathematical Journal. Vol.18. 1-36 (1995)
OKA、穆托:《论平面曲线的解析复杂性》高台数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
岡睦雄: "On resolution complexity of plane curves" Kodai Mathematical Journal. 18. 1-36 (1995)
Mutsuo Oka:“论平面曲线的解析复杂性”Kodai Mathematical Journal 18. 1-36 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
MATUMOTO, Takao: "Lusternik-Schnierelmann category and knot complement II" Topology. 34. 177-184 (1995)
MATUMOTO, Takao:“Lusternik-Schnierelmann 范畴和结补 II”拓扑。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIDA Goro其他文献
NISHIDA Goro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIDA Goro', 18)}}的其他基金
Higher dimensional category and its applications
高维范畴及其应用
- 批准号:
19540075 - 财政年份:2007
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopy Theoretic Study of Higher Dimensional Categories
高维范畴的同伦理论研究
- 批准号:
16540061 - 财政年份:2004
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic topology and formal group law
代数拓扑和形式群律
- 批准号:
13440022 - 财政年份:2001
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on elliptic cohomology theory
椭圆上同调理论研究
- 批准号:
08404002 - 财政年份:1996
- 资助金额:
$ 12.8万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 12.8万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 12.8万 - 项目类别:
Standard Grant