MATHEMATICAL ANALYSIS AND NUMERICAL ANALYSIS OF SEVERAL KINDS OF DIFFERENTIAL EQUATIONS.
几种微分方程的数学分析和数值分析。
基本信息
- 批准号:06640335
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To solve non-symmetric linear systems derived from the discretization of singular pertur-bation problems, we propose a generalized SOR method with multiple relaxation parameters, that is the improved SOR method with orderings and study its theory and practical use.In the case of tridiagonal matrices, optimal choices of the parameters are examined : It is shown that the spectral radius of the iterative matrix is reduced to zero for a pair of parameter values which are computed from the pivots of the Gaussian elimination applied to the system. A proper choice of orderings and starting vectors for the iteration is also proposed.We apply the above method to two-dimensional cases, and propose the "adaptive improved block SOR method with orderings" for block tridiafonal matrices. The point of this method is to change the multiple relaxation parameters not only for each block but also for each iteration. If special multiple relaxation parameters are selected and used with this method for an n * n block tridiagonal matrix whose block matrices are all n * n matrices, then this iterative method converges at most n^2 iterations.We also proposed the improved SSOR method with orderings, which converges at most only one iteration for a tridiagonal system, and n iterations for a block tridiagonal system.The generalized convergence theorems to the improved SOR method with orderings are also considered, and we study necessary and sufficient conditions for a matrix to be a generalized diagonally dominant.Using the notation 'basic LUL factorization' of matrices, we give some techniques to obtain special multiple relaxation parameters such that the spectral radius of the iterative matrix is zero for the Hessenberg matrices and a class of matrices.
为了求解由奇异摄动问题离散化得到的非对称线性方程组,本文提出了一种带多松弛参数的广义SOR方法,即带序的改进SOR方法,并研究了它的理论和实际应用.在三对角矩阵的情况下,讨论了参数的最优选择问题.它示出的迭代矩阵的谱半径减少到零的一对参数值,这是从应用到系统的高斯消去的枢轴计算。本文将上述方法应用于二维情形,提出了块三对角矩阵的“带排序的自适应改进块SOR方法”。该方法的要点是不仅改变每个块的多重松弛参数,而且改变每次迭代的多重松弛参数。对于n × n块三对角矩阵,若选取特殊的多重松弛参数,则此迭代方法至多收敛n^2次,并提出了改进的带序SSOR方法,该方法对三对角系统至多收敛一次,和n次迭代,并讨论了带序的改进SOR方法的广义收敛性定理,研究了矩阵是广义对角占优矩阵的充要条件,利用矩阵的基本LUL分解,本文给出了一些技巧,使Hessenberg矩阵和一类矩阵的迭代矩阵的谱半径为零。
项目成果
期刊论文数量(50)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KAZUNAGA TANAKA: "HOMOCLINIC ORBITS ON NON-COMPACT RIEMANNIAN MANIFOLDS FOR SECOND ORDER HAMTLTONIAN SYSTEMS." REND.SEM.MATH.UNIV.PADOVA. 92. 153-176 (1995)
KAZUNAGA TANAKA:“二阶汉姆尔顿系统的非紧黎曼流形上的同宿轨道。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
TAKETOMO MITSUI: "NUMERICAL ANALYSIS OF ORDINARY DIFFERENTIAL EQUARIONS AND ITS APPLICATIOND". WORLD SCIENTIFIC PUBLISHING, 228 (1995)
TAKETOMO MITSUI:“常微分方程的数值分析及其应用”。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大谷 光春: "Almost periodic sdutions of periodic systems gorerned by subdifferantial operatard" Proceedings of the A. M. S.(予定). (1995)
Mitsuharu Otani:“亚微分算子对周期系统的几乎周期性研究”,A. M. S. 论文集(计划)(1995 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中 和永: "Homachimic orlits on non-compact Rieninnien nanibdas for secand order Heniltorion systems" Rond. Sem. Path. Unir. Padova. 93. 153-176 (1995)
Kazunaga Tanaka:“二阶 Heniltorion 系统的非紧凑 Rieninnien nanibdas”Rond。 153-176 (1995)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
YOSHIO YAMADA: "GLOBAL SOLUTIONS FOR QUASI-LINEAR PARABOLIC SYSTEMS WITH CROSS-DIFFUSION EFFECTS." NONLENEAR ANALYSIS,THEORY,METHODS.AND APPLICATIONS. 1395-1412 (1995)
Yoshio YAMADA:“具有交叉扩散效应的准线性抛物线系统的全局解决方案。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MUROYA Yoshiaki其他文献
MUROYA Yoshiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MUROYA Yoshiaki', 18)}}的其他基金
Accurateness and stability of delayed integral and differential equations and their discrete versions.
延迟积分和微分方程及其离散形式的准确性和稳定性。
- 批准号:
21540230 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accuracy and stability for delayed integral and differential equations and their discrete equations
延迟积分和微分方程及其离散方程的精度和稳定性
- 批准号:
19540229 - 财政年份:2007
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accuracy and atability for delayed integral and differential equations and their discrete equations
时滞积分微分方程及其离散方程的准确度和稳定性
- 批准号:
16540207 - 财政年份:2004
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)