Accuracy and atability for delayed integral and differential equations and their discrete equations

时滞积分微分方程及其离散方程的准确度和稳定性

基本信息

  • 批准号:
    16540207
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

We have established the following results by this project :Conditions of permanence for the discrete models of nonautonomous Lotka-Volterra systems. ([21]).Conditions of persistence and global asymptotic stability for the discrete models of pure-delay Lotka-Volterra systems ([19], [20]).Another kind Condition of global asymptotic stability which is derived by using the main term of the equation ([16], [18]).Condition of global stability for the Lotka-Volterra system which has the dimension $n geq 2$ and at most one delay for each species. This condition improves the well-known stability conditions which were derived by K. Gopalsamy ([17]).Conditions of boundedness and partial survival for solutions for nonautonomous May-Leonard equation which were extended to nonautonomous delayed Lotka-Volterra systems ([15]).Conditions of contractivity and global asymptotic stability for general delayed logistic equations ([14]).A rigorous proof of a part of conjecture for global asymptotic stability … More of logistic equation which has one negative feedback term of piecewise constant delay and a friction term ([13]).Conditions of partial survival and extinction of species for discrete models of Lotka-Volterra type which were extended the results on the "principle of extinction" obtained by S. Ahmad ([12]).Conditions of global asymptotic stability for the zero solution of separable nonlinear delayed differential equations ([11]).Two sufficient conditions of contractivity for solutions of the discrete models of nonautonomous Lotka-Volterra type. We also show that the condition of global asymptotic stability obtained by W. Wang et al. satisfies the contractivity condition for autonomous case ([10]).Conditions of persistence and global asymptotic stability for solutions of pure-delay type nonautonomous Lotka-Volterra systems ([9]).A sufficient condition of permanence for system which is derived by applying both results proposed by S. Ahmad and A. C. Lazer and the partial survival for nonautonomous May-Leonald equations obtained by R. Redfeffer ([8]).Moreover, we obtain more results on the conditions of global asymptotic stability for differential equations and discrete equations ([1]-[7]). Less
通过本项目,我们建立了以下结果:非自治Lotka-Volterra系统离散模型的持续生存条件。([21]).纯时滞Lotka-Volterra系统离散模型的持久性和全局渐近稳定性条件([19],[20]).利用方程的主项导出了另一类全局渐近稳定的条件([16],[18]).维数为ngeq ~ 2且每个种群至多有一个时滞的Lotka-Volterra系统的全局稳定性条件.这个条件改进了K. Gopalsamy([17]).推广到非自治时滞Lotka-Volterra系统的非自治May-Leonard方程解的有界性和部分生存性条件([15]).一般时滞Logistic方程的压缩性和全局渐近稳定性条件([14]).关于全局渐近稳定性的一部分猜想的严格证明 ...更多信息 本文讨论了具有分段常数时滞负反馈项和摩擦项的Logistic方程([13])的种群部分生存和灭绝的条件,推广了S. Ahmad([12]).可分非线性时滞微分方程零解的全局渐近稳定性条件([11]).非自治Lotka-Volterra型离散模型解的压缩性的两个充分条件.我们还证明了W. Wang等在文献[10]中给出了非自治Lotka-Volterra系统解的持续生存和全局渐近稳定的条件,在文献[9]中给出了非自治Lotka-Volterra系统解的持续生存和全局渐近稳定的条件,并应用S. Ahmad和A. C. Lazer和R. Redfeffer([8])的结果,进一步得到了微分方程和离散方程全局渐近稳定性条件的更多结果([1]-[7])。少

项目成果

期刊论文数量(107)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Permanence, contractivity and global stability in a logistic equation with general delays
具有一般时滞的逻辑方程的持久性、收缩性和全局稳定性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Muroya;Y.Kato;Y.Muroya
  • 通讯作者:
    Y.Muroya
Erratum to "Persistence and global stability in discrete models of pure-delay nonautonomous LOtka-Volterra type" [J. Math. Anal. Appl. 293 (2004) 446-461]
“纯延迟非自治 LOtka-Volterra 型离散模型的持久性和全局稳定性”勘误 [J.
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    [18] K.Uesugi;Y.Muroya;E.Eshiwata;[19] Y.Muroya
  • 通讯作者:
    [19] Y.Muroya
A global stability criterion in scalar delay differential equations
标量时滞微分方程的全局稳定性判据
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Ishiwata;Y. Muroya;Y. Muroya;Y. Muroya and E. Ishiwata;Y. Muroya;Y. Muroya
  • 通讯作者:
    Y. Muroya
Persistence and global stability far pure-delay type nonautonomous Lotka-Volterra differential systems
远纯时滞型非自治Lotka-Volterra微分系统的持久性和全局稳定性
Global attractivity for discrete Clark model x_{n+l}=q x_n+(1-q)g(x_{n-k})
离散 Clark 模型的全局吸引力 x_{n l}=q x_n (1-q)g(x_{n-k})
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MUROYA Yoshiaki其他文献

MUROYA Yoshiaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MUROYA Yoshiaki', 18)}}的其他基金

Accurateness and stability of delayed integral and differential equations and their discrete versions.
延迟积分和微分方程及其离散形式的准确性和稳定性。
  • 批准号:
    21540230
  • 财政年份:
    2009
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accuracy and stability for delayed integral and differential equations and their discrete equations
延迟积分和微分方程及其离散方程的精度和稳定性
  • 批准号:
    19540229
  • 财政年份:
    2007
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MATHEMATICAL ANALYSIS AND NUMERICAL ANALYSIS OF SEVERAL KINDS OF DIFFERENTIAL EQUATIONS.
几种微分方程的数学分析和数值分析。
  • 批准号:
    06640335
  • 财政年份:
    1994
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Clarification of the multi-layered structure of stationary solutions induced by the cross-diffusion limit in the Lotka-Volterra system
澄清 Lotka-Volterra 系统中交叉扩散极限引起的稳态解的多层结构
  • 批准号:
    19K03581
  • 财政年份:
    2019
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis for the Lotka-Volterra system with nonlinear diffusion
非线性扩散 Lotka-Volterra 系统的数学分析
  • 批准号:
    24740101
  • 财政年份:
    2012
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on spatial pattern solutions for the Lotka-Volterra system with advection
Lotka-Volterra系统平流空间格局解研究
  • 批准号:
    21740129
  • 财政年份:
    2009
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on the structure of solutions for the Lotka?Volterra system with cross?diffusion
交叉扩散Lotka?Volterra系统解的结构研究
  • 批准号:
    18740093
  • 财政年份:
    2006
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了