The Research on Making the Boundary Element Method Highly Accurate and Efficient
边界元法高精度高效化的研究
基本信息
- 批准号:06650073
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Boundary element Method (BEM) is a powerful method for solving partial differential equations. This research project is concerned with making the method more accurate and efficient, and on its application to inverse problems.1. Making the solution more efficientIn BEM,each element is related to all the other elements, so that the amount of computation (O (n^3)) and required memory (O (n^2)) for generating and solving the dense system of linear equations becomes prohibitive as the number elements (n) becomes large.In order to overcome this problem, we have applied the Fast Multipole Method (FMM) and the Panel Clustering Method to the 2-D potential problem, 3-D Poisson problem and 2-D and 3-D elastostatics. The methods use multipole expansions or Taylor expansions in order to approximate and cluster effects between elements far apart within the required accuracy, so that the computation and memory is reduced to nearly O (n).We have also applied the FMM to the three-dimensional boundary element simulation of the electron gun, taking the space charge effect of charged particles into account. Further, we developed a method for treating the periodic boundary condition when calculating the forces acting between vortices in 2-D using the FMM.2. Accurate computation of integralsWe have developed an automatic numerical integration method using variable transformations for the calculation of nearly singular integrals which appear in the boundary element method when treating thin structures and gaps or when calculating the field very near the boundary.3. Application to inverse problemsWe applied 3-D BEM and nonlinear optimization to the problem of identifying a current dipole in the brain, where the head is modelled by three regions with different conductivity. This was made possible by introducing a new object function based on the virtual potantial due to the dipole placed in the infinite homogeneous region.
边界元方法是求解偏微分方程组的一种强有力的方法。本研究项目致力于使该方法更加准确和高效,并将其应用于反问题1。为了提高求解效率,在边界元中,每个单元都与所有其他单元相关,因此,随着单元个数(N)的增加,生成和求解稠密线性方程组所需的计算量(O(n^3))和所需的内存(O(n^2))变得令人望而却步。为了克服这个问题,我们将快速多极子方法(FMM)和面板聚类法应用于二维势问题、三维泊松问题以及二维和三维弹性静力学。该方法利用多极展开式或泰勒展开式,在所要求的精度范围内对相距较远的单元之间的效应进行近似和聚集,从而将计算量和存储空间降至接近O(N)。我们还将FMM应用于电子枪的三维边界元模拟,考虑了带电粒子的空间电荷效应。此外,我们发展了一种处理周期边界条件的方法,当使用FMM计算二维涡间作用力时。积分的精确计算我们发展了一种使用变量变换的自动数值积分方法,用于计算在处理薄结构和缝隙时或在计算非常接近边界的场时出现在边界元方法中的近奇异积分。逆问题的应用我们将三维边界元和非线性优化应用于识别大脑中的电流偶极子的问题,其中头部由三个具有不同电导率的区域建模。这是通过引入一个新的目标函数来实现的,该目标函数基于由于偶极子放置在无限均匀区域中而产生的虚势。
项目成果
期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Kunihiro: "Automatic Numerical Integration for the Boundary Element Method Using Variable Transformation and its Error Analysis" Transactions of the Japan Society for Industrial and Applied Mathematics. Vol. 5, No. 1. 101-119 (1995)
N.Kunihiro:“使用变量变换的边界元方法的自动数值积分及其误差分析”日本工业和应用数学学会会刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Yamada: "A Multipole Method Two-Dimensional Elastostatics" Proc. 5th BEM Technology Conf.59-64 (1995)
Y.Yamada:“多极方法二维弹性静力学”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Yamada: "A Multipole Boundary Element Method for Two-Dimensional Elastostatics" Boundary Elements : Notes on Num. Fluid Mech.Vol. 54. 255-267 (1996)
Y.Yamada:“二维弹性静力学的多极边界元法”边界元:关于数字的注释。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nishida: "A Fast Multipole Method for the Three-Dimensional Poisson Equation Arising in the Electron Gun Simulation" Proc. 17th Symp. on Comp. Electron. & Electric Eng.315-318 (1996)
T.Nishida:“电子枪模拟中出现的三维泊松方程的快速多极方法”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Washio: "Overlapped Multicolor MILU Preconditioning" SIAM Journal of Scientific Computing. Vol.16,No.3. 636-650 (1995)
T.Washio:“重叠多色 MILU 预处理”SIAM 科学计算杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAYAMI Ken其他文献
HAYAMI Ken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAYAMI Ken', 18)}}的其他基金
Iterative Methods for Least Squares Problems and their Application to Inverse Problems
最小二乘问题的迭代方法及其在反问题中的应用
- 批准号:
24560082 - 财政年份:2012
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Solution of Least Squares Problems Using Krylov Subspace Methods
用Krylov子空间方法求解最小二乘问题
- 批准号:
21560072 - 财政年份:2009
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Implementation of the Boundary Element Method and its Application to Inverse Problems
边界元法的快速实现及其在反问题中的应用
- 批准号:
12650060 - 财政年份:2000
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A new boundary element method for free surface flows
一种新的自由表面流边界元方法
- 批准号:
573089-2022 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
University Undergraduate Student Research Awards
Boundary element method for domains whose Green's function is not available
格林函数不可用域的边界元法
- 批准号:
21K19764 - 财政年份:2021
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Postgraduate Scholarships - Doctoral
A study on a space-time boundary element method for the wave equation
波动方程时空边界元法研究
- 批准号:
20K11849 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coupling of fictitious domain methods and the boundary element method for the analysis of acoustic metamaterials
虚拟域方法与边界元方法耦合用于声学超材料分析
- 批准号:
423317638 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Research Grants
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
- 批准号:
534339-2019 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Postgraduate Scholarships - Doctoral
Virtual Experiments and Design of Particulate Composites with the Inclusion-based Boundary Element Method (iBEM)
使用基于夹杂物的边界元法 (iBEM) 进行颗粒复合材料的虚拟实验和设计
- 批准号:
1762891 - 财政年份:2018
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
Reliability Based Analysis with the Boundary Element Method
使用边界元法进行基于可靠性的分析
- 批准号:
1817399 - 财政年份:2016
- 资助金额:
$ 1.22万 - 项目类别:
Studentship
Three dimensional thermoelastic stress analysis of anisotropic solids by the boundary element method
边界元法各向异性固体三维热弹性应力分析
- 批准号:
4978-2010 - 财政年份:2015
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Grants Program - Individual
Fast direct solvers for the boundary element method in 3D and their applications to optimal design problems
3D 边界元法的快速直接求解器及其在优化设计问题中的应用
- 批准号:
26870269 - 财政年份:2014
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)