Researches on the higher order asymptotic theory of statistical inference
统计推断的高阶渐近理论研究
基本信息
- 批准号:07454030
- 负责人:
- 金额:$ 5.06万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the interval estimation in the theory of higher order asymptotics in statistical inference and an application to a percentage point of the distribution of sample correlation coefficient, and could get useful results in both cases. For discrete distributions it was usually impossible to obtain a non-randomized test or confidence interval with given size, and an actual size was often quite different from the prescribed level. But randomized procedures, which was quite nice in theory, were not easily acceptable to practitioners. So, in this research we constructed a randomized confidence interval from an optimal randomized test, i.e.a uniformly most powerful unbiased test and discussed its approximation using the Edgeworth expansion of the distribution of sufficient statistics. We also investigated that the approximation was accurate in the case of Poisson and binomial distributions.Next, an inference on the correlation coefficient rho is one of the important topics, and until … More now a percentage point of the sample correlation coefficient R has been approximated up to the higher order using the Cornish-Fisher expansion for Fisher's Z-transformation of R.But, unfortunately the approximation way was very complex and a computational treatment must be used. So, in the research we derived a new approximation formula of a percentage point of the distribution of R in a similar way to Akahira (1995) who introduced the approximation formula of a percentage point of the non-central t-distribution. Indeed, we derived the approximation formula using the Cornish-Fisher expansion for the statistic based on a linear combination of a normal random variable and chi-random variables. In numerical calculations, the approximation formula was seen to be that it dominated the normal approximation, the approximation by Fisher's Z-approximation, etc.and gives almost precise values in various cases of alpha and rho even for size 10 of sample.The research was carried out according to plan and the above results were obtained. They were also widely applied to practical problems. Discussions with researchers in related fields were very useful. Less
我们研究了统计推断中高阶渐近理论中的区间估计,以及对样本相关系数分布的一个百分点的应用,在这两种情况下都能得到有用的结果。对于离散分布,通常不可能获得具有给定大小的非随机检验或置信区间,并且实际大小通常与规定水平相差很大。但是随机程序,理论上很好,却不容易被实践者接受。因此,在本研究中,我们从一个最优随机检验,即一致最强大的无偏检验构造了一个随机置信区间,并利用充分统计量分布的Edgeworth展开式讨论了它的近似。我们还研究了在泊松分布和二项分布的情况下,近似是准确的。接下来,对相关系数rho的推断是一个重要的主题,直到现在,一个百分点的样本相关系数R已经近似到高阶,使用的是对R的Fisher的z变换的Cornish-Fisher展开,但不幸的是,近似的方式是非常复杂的,必须使用计算处理。因此,在研究中,我们推导了一个新的R分布的一个百分点的近似公式,类似于Akahira(1995)引入的非中心t分布的一个百分点的近似公式。实际上,我们使用基于正态随机变量和chi随机变量的线性组合的统计量的Cornish-Fisher展开式推导出了近似公式。在数值计算中,近似公式被认为是它支配了正态近似,Fisher的z近似等近似,并且在各种情况下给出了几乎精确的值,甚至对于样本大小为10的alpha和rho。按照计划进行了研究,并取得了上述结果。它们也被广泛应用于实际问题。与相关领域的研究人员的讨论非常有用。少
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N. Minami: "Local fluctuation of the spectrum of a munltidimensional Anderson tight binding model" Communications in Math.Physics. (印刷中). (1996)
N. Minami:“多维安德森紧束缚模型光谱的局部波动”数学物理通讯(1996 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小池健一: "逐次推定におけるBhattacharyya型情報不等式について" 数理解析研究所講究録. 916. 180-188 (1995)
Kenichi Koike:“关于顺序估计中的 Bhattacharyya 型信息不等式”数学分析研究所的 Kokyuroku 916. 180-188 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Akahira: "Radomized confidence intervals of a parameter for a family of discrete exponential type distributions" Commun.Statist.-Simul.26-3(印刷中). (1997)
M.Akahira:“离散指数型分布族参数的随机化置信区间”Commun.Statist.-Simul.26-3(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ken-ichi Koike: "On the optimum properties of sequential estimation procedures in the multinomial sampling plans." Sequential Analysis. 15(4). 285-298 (1996)
Ken-ichi Koike:“关于多项抽样计划中顺序估计程序的最佳特性。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Koike: "The Bhattacharyya type bound for the variance of sequential estimation procedures" J.Japan Statist.Soc.27-1(印刷中). (1997)
K. Koike:“Bhattacharyya 类型对连续估计程序方差的限制”J.Japan Statist.Soc.27-1(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AKAHIRA Masafumi其他文献
AKAHIRA Masafumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AKAHIRA Masafumi', 18)}}的其他基金
The clarification of hierarchical structure of statistical deficiency
统计缺陷层次结构的澄清
- 批准号:
15K11992 - 财政年份:2015
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
New Development of Statistical Experiment and Its Applications
统计实验及其应用的新进展
- 批准号:
24650146 - 财政年份:2012
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The clarification of the structure of the inverse problem in statistics and its applications
统计学中反问题结构的阐明及其应用
- 批准号:
21650063 - 财政年份:2009
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Theory of the foundation of mathematical statistics to analyze the biological information and its applications
生物信息分析的数理统计基础理论及其应用
- 批准号:
19340020 - 财政年份:2007
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Foundation of Mathematical Statistics on Quantum Inference and Its Applications
量子推理的数理统计基础及其应用
- 批准号:
14204006 - 财政年份:2002
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Researches on the Non-Regular Inference Theory and the Concepts of the Amounts of Information
非常规推理理论与信息量概念的研究
- 批准号:
10304005 - 财政年份:1998
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Researches on Statistical Inference and Its Applications
统计推断及其应用研究
- 批准号:
02302010 - 财政年份:1990
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Statistical inference on linear varying coefficients applying longitudinal discrete distribution
应用纵向离散分布对线性变化系数进行统计推断
- 批准号:
21700306 - 财政年份:2009
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Discrete distribution theory with its statistical applications
离散分布理论及其统计应用
- 批准号:
21740083 - 财政年份:2009
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Applications of multivariate discrete distribution in actuarial science
多元离散分布在精算学中的应用
- 批准号:
105506-1998 - 财政年份:1999
- 资助金额:
$ 5.06万 - 项目类别:
Discovery Grants Program - Individual
Applications of multivariate discrete distribution in actuarial science
多元离散分布在精算学中的应用
- 批准号:
105506-1998 - 财政年份:1998
- 资助金额:
$ 5.06万 - 项目类别:
Discovery Grants Program - Individual