Studies of The Spaces of Analytic Functions and Their Operators
解析函数空间及其算子的研究
基本信息
- 批准号:07640242
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) In 1995, Ohno investigated Toeplitz and Hankel operators on harmonic Borgman spaces on the unit disk. Main results are to characterize algebraic properties, boundedness and compactness. There exists a relation between the compactness of Hankel operators and Bourgain algebras. This is a very interesting problem. In 1996, he studied the conditions that differences of two composition operators are compact. He obtained some examples and a necessary condition closely related to the compactness of one composition operator.(2) Funabashi studied 5-dimensional submanifolds of a nearly Kaehler 6-spherc in the purcly imaginary octonians. Main result is that for any hypersurface of 6-sphere, there exists a grobal quaternion structure on the contact distribution. Moreover he studied tublar hypersurfaces. He iedentified the symplectic group SP (1) with the 3-dimensional sphere and considered parametrized 3-dimcnsional submanifolds in terms of SP (1) -orbits in the 6-sphere.(3) Hashimoto investig … More ated submanifolds theory in a 6-dimensional sphere S^6. A 6-dimensional sphere has an almost Hermitian structure.It was proved that n-dimensional sphere admit almost complex structures except for n*2,6. Also the automorphism group of this almost Hcrmitian structure of S^6 coincide with the exceptional Lie group G_2. The 2-dimensional submanifolds of a 6-dimensional sphere is called the J-holomorphic curves of S^6 if its tangent space is invariant under the almost complex structure. I obtained some classification theorems and a rigidity theorem with respect to the Lie group G_2 about J-holomorphic curves of S^6.(4) Ishizaki has studied the complex differential equations, mainly admissible solutions of first order algebraic differential equations and complex oscillation for an equation of the form f"+A (z) f=0. Complex dynamics theory has been also of our great interest. Study of hypertranscendency has treated from the two points of view, say complex differential theory and complex dynamics theory. Less
(1)1995年,Ohno研究了单位圆盘上调和Borgman空间上的Toeplitz算子和Hankel算子。主要结果是刻画了代数性质、有界性和紧性。Hankel算子的紧性与Bourain代数之间存在着一定的联系。这是一个非常有趣的问题。1996年,他研究了两个复合算子的差是紧的条件。他得到了一些例子和与一个复合算子的紧性密切相关的一个必要条件。(2)Funabashi研究了纯虚八元空间中近Kaehler 6-球面的5维子流形。主要结果是:对于任意6-球面的超曲面,在接触分布上都存在Grobal四元数结构。此外,他还研究了管状超曲面。他用三维球面来证明辛群SP(1),并用6维球面上的SP(1)轨道来考虑参数化的三维子流形。(3)桥本研究…6维球面子流形理论S^6.6维球面具有几乎厄米特结构.证明了n维球面除n*2,6外,还有几乎复结构.S^6的这种几乎厄米特结构的自同构群与例外李群G_2重合.6维球面上的二维子流形称为S^6的J-全纯曲线,如果其切空间在几乎复结构下不变.得到了关于S的J-全纯曲线关于Lie群G_2的一些分类定理和一个刚性定理。(4)石崎研究了复微分方程组,主要是一阶代数微分方程解的允许解和形式为f“+A(Z)f=0的复振动。复动力学理论也是我们非常感兴趣的。超超越的研究是从复微分理论和复动力学理论两个角度进行的。较少的
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Hashimoto(共): "Hypersurfaces in a 6-dimensional sphere" J.of karean Math Soc. (近刊).
H.Hashimoto(合著者):“六维球体中的超曲面”J.of karean Math Soc(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K,Ishizaki(共): "On admissible solutions of algebraic differential equations" Funkcialaj Ekvacioj. 38. 433-442 (1995)
K, Ishizaki (co):“关于代数微分方程的容许解”Funkcialaj Ekvacioj 38. 433-442 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ishizaki and K.Tohge: "On the comlex oscilltion of some linear differential equations" J.Math.Anal.Appl.(to appear).
K.Ishizaki 和 K.Tohge:“关于某些线性微分方程的复杂振荡”J.Math.Anal.Appl.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hideya Hashimoto: "Minimal surfaces in a 4-dimensional sphere" Houston Math. J.21. 449-463 (1995)
Hideya Hashimoto:“4 维球体中的最小曲面”休斯顿数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ishizaki(共): "On the complex oscillation of some linear differential equations" J,Math.Anal Appl. (近刊).
K. Ishizaki(合著者):“关于某些线性微分方程的复振荡”J,Math.Anal Appl(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHNO Shuichi其他文献
OHNO Shuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHNO Shuichi', 18)}}的其他基金
Researches on the structures of analytic function spaces and linear operators on them
解析函数空间及其线性算子的结构研究
- 批准号:
15K04905 - 财政年份:2015
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the structures of the spaces of analytic and harmonic functions and operators on them
解析调和函数空间结构及其算子的研究
- 批准号:
24540190 - 财政年份:2012
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PERFORMANCE IMPROVEMENT OF OFDM BY PILOT-AIDED SPARCECHANNEL ESTIMATION
通过导频辅助空间信道估计改进 OFDM 性能
- 批准号:
22560380 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the structures of function spaces of analytic and harmonic functions and operators on them
解析函数和调和函数的函数空间结构及其算子的研究
- 批准号:
20540185 - 财政年份:2008
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on the Spaces of Analytic and Harmonic Functions and Their Operators
解析函数、调和函数空间及其算子的研究
- 批准号:
17540169 - 财政年份:2005
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on Properties of the Spaces of Analytic Functions and Their Operators
解析函数及其算子空间性质的研究
- 批准号:
15540181 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on Properties of Banach Spaces of Analytic Functions and Their Operators
解析函数及其算子的Banach空间性质研究
- 批准号:
11640179 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of The Structures of Analytic Function Spaces and Their Operators
解析函数空间及其算子的结构研究
- 批准号:
09640218 - 财政年份:1997
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




