Researches on the Spaces of Analytic and Harmonic Functions and Their Operators

解析函数、调和函数空间及其算子的研究

基本信息

  • 批准号:
    17540169
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

1. We have investigated properties of composition operators on the space H∞ of bounded analytic functions on the open unit disk. T. Hosokawa, K. J. Izuchi and the author characterized the topological structure of the set of weighted composition operators on H∞ and published a paper. The author has continued to study linear combinations of composition operators on the space H∞ and completely characterized the compactness and estimated the essential norms in the case that coefficients are positive. And Izuchi and he extended these results and obtained the estimation of the essential norms such that real parts of coefficients are positive and submitted results. 2. K.J. Izuchi and the author characterized the compactness and complete continuity of Hankel-type operators on the space of bounded harmonic functions on the open unit disk and published. These operators related to tight uniform algebras, the Dunford-Pettis property, and Bourgain algebras. Moreover the author studied the cases of … More Hardy and Bergman spaces and had a talk at RIMS Joint Research "Analytic Function Spaces and Their Operators" (June 21(Wed) - 23(Fri), 2006,Kyoto University Research Institute for Mathematical Science). This conference was applied by the author with the relation ship to this project and accepted. 3. T. Hosokawa and the author studied the topological structure of the space of composition operators on the Bloch space in the operator topology and published. Furthermore we considered the boundedness and the compactness of the differences of two composition operators on the Bloch and the little Bloch spaces and proved that the weak compactness of the differences on the little Bloch space is equivalent to the compactness. This paper also is accepted. 4. Hibschweiler and Portnoy defined the products of composition and differentiation operators on Hardy and weighted Bergman spaces and investigated the boundedness and the compactness between weighted Bergman spaces using the Carleson-type measures. But such weighted Bergman spaces would not include the Hardy space case in the characterization of boundedness and compactness of the products of composition and differentiation operators. The author studied this problem and published. Less
1.我们研究了开单位圆盘上有界解析函数的空间H∞上的复合算子的性质。 T. Hosokawa、K. J. Izuchi 等作者表征了 H∞ 上的加权合成算子集合的拓扑结构,并发表了论文。作者继续研究空间H∞上复合算子的线性组合,完整地表征了系数为正情况下的紧性并估计了本质范数。 Izuchi 和他扩展了这些结果,得到了使系数实部为正的基本范数的估计,并提交了结果。 2. K.J. Izuchi 和作者描述了开单位圆盘上有界调和函数空间上 Hankel 型算子的紧致性和完全连续性并发表。这些运算符与紧一致代数、邓福德-佩蒂斯性质和布尔干代数相关。此外,作者还研究了Hardy和Bergman空间的案例,并在RIMS联合研究中心做了报告“Analytic Function Spaces and Their Operators”(2006年6月21日(周三)-23日(周五),京都大学数学科学研究所)。本次会议是由与本项目有关系的作者提出申请并被接受的。 3. T. Hosokawa和作者研究了算子拓扑中布洛赫空间上复合算子空间的拓扑结构并发表。进一步考虑了布洛赫空间和小布洛赫空间上两个复合算子差的有界性和紧性,证明了小布洛赫空间上差的弱紧性与紧性等价。这篇论文也被接受了。 4. Hibschweiler 和 Portnoy 定义了 Hardy 和加权 Bergman 空间上的复合算子和微分算子的乘积,并使用 Carleson 型测度研究了加权 Bergman 空间之间的有界性和紧性。但这种加权伯格曼空间在描述合成算子和微分算子的乘积的有界性和紧致性时不包括哈代空间情况。作者研究了这个问题并发表了。较少的

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Products of composition and differentiation between Hardy spaces
Products of Composition and Differentiation beween Hardy Spaces
Hardy空间的复合和微分的乘积
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takuya Hosokawa;Shuichi Ohno;Shuichi Ohno
  • 通讯作者:
    Shuichi Ohno
Topological Structure of the Space of Weighted Composition Operators on H∞
  • DOI:
    10.1007/s00020-004-1337-1
  • 发表时间:
    2005-08
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Takuya Hosokawa;K. Izuchi;S. Ohno
  • 通讯作者:
    Takuya Hosokawa;K. Izuchi;S. Ohno
Hankel-type Operators on the Spaces of Analytic Functions
解析函数空间上的汉克尔型算子
Hankel-type operators on the space of bounded harmonic functions
有界调和函数空间上的 Hankel 型算子
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNO Shuichi其他文献

OHNO Shuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNO Shuichi', 18)}}的其他基金

Researches on the structures of analytic function spaces and linear operators on them
解析函数空间及其线性算子的结构研究
  • 批准号:
    15K04905
  • 财政年份:
    2015
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the structures of the spaces of analytic and harmonic functions and operators on them
解析调和函数空间结构及其算子的研究
  • 批准号:
    24540190
  • 财政年份:
    2012
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PERFORMANCE IMPROVEMENT OF OFDM BY PILOT-AIDED SPARCECHANNEL ESTIMATION
通过导频辅助空间信道估计改进 OFDM 性能
  • 批准号:
    22560380
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on the structures of function spaces of analytic and harmonic functions and operators on them
解析函数和调和函数的函数空间结构及其算子的研究
  • 批准号:
    20540185
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on Properties of the Spaces of Analytic Functions and Their Operators
解析函数及其算子空间性质的研究
  • 批准号:
    15540181
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on Properties of Banach Spaces of Analytic Functions and Their Operators
解析函数及其算子的Banach空间性质研究
  • 批准号:
    11640179
  • 财政年份:
    1999
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of The Structures of Analytic Function Spaces and Their Operators
解析函数空间及其算子的结构研究
  • 批准号:
    09640218
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of The Spaces of Analytic Functions and Their Operators
解析函数空间及其算子的研究
  • 批准号:
    07640242
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Analysis of Riemann-Stieltjes type integral operators on Bergman spaces
Bergman空间上的Riemann-Stieltjes型积分算子分析
  • 批准号:
    26800050
  • 财政年份:
    2014
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Toeplitz operators on the Hardy and Bergman spaces
哈代和伯格曼空间上的托普利茨算子
  • 批准号:
    448794-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Operator analysis and its application on the weighted Bergman spaces
算子分析及其在加权Bergman空间上的应用
  • 批准号:
    24540155
  • 财政年份:
    2012
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the essential norm and the compactness of the weighted composition operator on Bergman spaces
论Bergman空间上加权复合算子的本质范数和紧性
  • 批准号:
    20840004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
Potential analysis for Bergman spaces
伯格曼空间的潜力分析
  • 批准号:
    18540169
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Berezin transform characterization of operator behaviour on weighted bergman spaces
加权伯格曼空间上算子行为的 Berezin 变换表征
  • 批准号:
    105467-2001
  • 财政年份:
    2004
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Berezin transform characterization of operator behaviour on weighted bergman spaces
加权伯格曼空间上算子行为的 Berezin 变换表征
  • 批准号:
    105467-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Berezin transform characterization of operator behaviour on weighted bergman spaces
加权伯格曼空间上算子行为的 Berezin 变换表征
  • 批准号:
    105467-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Berezin transform characterization of operator behaviour on weighted bergman spaces
加权伯格曼空间上算子行为的 Berezin 变换表征
  • 批准号:
    105467-2001
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Interpolation and Sampling in Bergman Spaces; Factors of Harmonic Polynomials
RUI:伯格曼空间中的插值和采样;
  • 批准号:
    0101530
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了