Studies on adaptive boundary integral equation methods using wavelets

小波自适应边界积分方程方法研究

基本信息

  • 批准号:
    07650530
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

We originally planned to investigate the use of spline wavelets in BIEM for wave equations, both in time and frequency domains. However, we found that these functions do not drastically improve accuracy and efficiency of the solutions of BIE compared to the conventional shape functions. In particular some of wavelet functions are found not to be very convenient as time shape functions as one considers the causality of the problem. We thus concluded that it is more appropriate to concentrate on frequency domain approaches than the time domain ones, and that it would be necessary to return to the more fundamental cases of Laplace's equation. Fortunately, it is found that the multiscale analysis of wavelet functions is closely related to fast solution methods of BIE,which are studied extensively these days. We could thus formulate and test the wavelet-Galerkin BIEM,which, in our opinion, is more effective and useful than what we originally intended to investigate.The wavelet-Galerkin BIEM improves the conventional Galerkin BIEM,which uses only scaling functions, by using Haar's wavelet functions. Since Haar's wavelet functions integrate to zero, the single and double layr potentials, with wavelet density functions decay more quickly than with conventional shape functions. In addition the use of Haar's wavelet functions as test functions further accelerates the decay ; indeed, the rate of decay of off-diagonal terms in the matrix of the wavelet-Galerkin equation is bigger by the order of 2 than that of the conventional Galerkin method. Therefore the proposed method makes the matrix equation more diagonally dominated and makes it possible to replace some of off-diagonal terms by zero without deterioration in the quality of the solution. As we found, replacing even 75% of the components in the matrix by zero was acceptable in a certain problem with approximately 500 DOF.We thus conclude that the wavelet-Galerkin BIEM is very promising as a fast solution method of BIE.
我们最初计划在BIEM中研究样条小波在时域和频域波动方程中的应用。然而,我们发现与传统的形状函数相比,这些函数并没有显著提高BIE解的精度和效率。特别是当考虑到问题的因果关系时,发现一些小波函数作为时间形状函数不是很方便。因此,我们得出结论,集中于频域方法比时域方法更合适,并且有必要回到拉普拉斯方程的更基本的情况。所幸的是,人们发现小波函数的多尺度分析与BIE的快速求解方法密切相关,这些方法目前得到了广泛的研究。因此,我们可以制定和测试小波伽辽金BIEM,在我们看来,它比我们最初打算研究的更有效和有用。小波伽辽金BIEM利用Haar小波函数,改进了传统伽辽金BIEM仅使用尺度函数的缺点。由于Haar的小波函数积分为零,单层和双层势,小波密度函数比传统的形状函数衰减更快。此外,使用Haar小波函数作为测试函数进一步加速了衰减;事实上,小波伽辽金方程矩阵中非对角线项的衰减速率比传统伽辽金方法的衰减速率大2个数量级。因此,所提出的方法使矩阵方程更偏向于对角线支配,并且可以在不降低解质量的情况下将一些非对角线项替换为零。正如我们所发现的,在一个大约500自由度的特定问题中,将矩阵中75%的分量替换为零是可以接受的。因此,我们认为小波伽辽金BIEM作为一种快速求解BIE的方法是非常有前途的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIMURA Naoshi其他文献

NISHIMURA Naoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIMURA Naoshi', 18)}}的其他基金

Studies on preconditioning and basis functions in periodic fast multipole methods for Maxwell's equations
麦克斯韦方程组周期快速多极子方法的预处理和基函数研究
  • 批准号:
    23560068
  • 财政年份:
    2011
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the fast multipole method for periodic and non-periodic boundary value problems in periodic domains
周期域周期与非周期边值问题的快速多极子方法
  • 批准号:
    20360047
  • 财政年份:
    2008
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a clinical method for the rehabilitative evaluation of spasticity
痉挛康复评估临床方法的开发
  • 批准号:
    10838013
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the numerical solution of huge boundary value problems in earthquake engineering
地震工程巨边值问题数值求解研究
  • 批准号:
    10450168
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a solver system for an inverse problem of defect shape determination with elastic wave
开发弹性波缺陷形状确定反问题求解器系统
  • 批准号:
    04555108
  • 财政年份:
    1992
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
A study on the dynamic control of large flexible structures with BIEM
大型柔性结构BIEM动力控制研究
  • 批准号:
    04650405
  • 财政年份:
    1992
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

基于等几何FEM-BEM的声振系统微结构拓扑优化方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
用BEM等方法对新型复合材料断裂、脱层的研究
  • 批准号:
    19171072
  • 批准年份:
    1991
  • 资助金额:
    1.3 万元
  • 项目类别:
    面上项目

相似海外基金

Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
  • 批准号:
    534339-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Rigorous Analysis and Simulation of Multi-Metasurface Systems Using the Boundary Element Method (BEM)
使用边界元法 (BEM) 对多超表面系统进行严格分析和仿真
  • 批准号:
    534339-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of Extended BEM Method Which Includes the Rotor-Tower Aerodynamic Interaction of Downwind Turbines
扩展 BEM 方法的发展,其中包括顺风涡轮机转子-塔架气动相互作用
  • 批准号:
    19K04195
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A 3D shape optimisation system for plasmonics using isogeometric BEM
使用等几何 BEM 的等离子体激元 3D 形状优化系统
  • 批准号:
    18K11335
  • 财政年份:
    2018
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a next-generation IGA-BEM based on T-splines to investigate the performance of complex-shaped wave energy devices undergoing strong mutual interactions in large arrays
开发基于T样条的下一代IGA-BEM,以研究在大型阵列中经历强相互作用的复杂形状波浪能装置的性能
  • 批准号:
    18K13939
  • 财政年份:
    2018
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simulation of superconducting Cavities with Isogeometric Boundary Elements (IGA-BEM)
等几何边界元超导腔仿真 (IGA-BEM)
  • 批准号:
    350869536
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Grants
Multi-scale adhesive contact for layered media: Asymptotic modelling, BEM simulation, and MDR extension
层状介质的多尺度粘合接触:渐近建模、BEM 模拟和 MDR 扩展
  • 批准号:
    374549186
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Grants
Development of a design protocol for building information model (BIM) and building energy modeling (BEM)
开发建筑信息模型 (BIM) 和建筑能源建模 (BEM) 的设计协议
  • 批准号:
    483302-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Engage Grants Program
Application of the BEM CSS design methodology to a Sencha ExtJs App
BEM CSS 设计方法在 Sencha ExtJs 应用程序中的应用
  • 批准号:
    485165-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
B-bem: The Bayesian building energy management Portal
B-bem:贝叶斯建筑能源管理门户
  • 批准号:
    EP/L024454/1
  • 财政年份:
    2014
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了