Three Dimensional Analysis of Seepage Through Fill Dam for Irrigation Using the Isoparametric Finite Elements

灌溉填土坝渗流的等参有限元三维分析

基本信息

  • 批准号:
    07660327
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

With regard to planning design and construction of fill dam, Seepage within the dam body or through the foundation are one of important problems. Because of economical and safe performance of fill dams, it is needful to compute quantities of seepage flow in fill dams and their foundations.The results of this research are as follows.1 Steady state flow was dealt with in this seepage problem.2 In this case, a saturated-unsaturated finite element approach, as proposed by Nenman (1973), could be applied. The Newton-Raphson iteration algohithm is also used to obtain an approximate phreatic surface, because the pressure must be zero on the phreatic surface as this is exposed to atmosphere.3 With the shape of the three-dimensional isoparametric element, the variation of the unknown, phi, had been specified.4 The governing equation was written by the balance for steady-state flow and the finite element discretization was proceeded on the assumption of a trial function expansion, using either the week formulation of the governing equation or the variational statement of the functional giving on minimization the satisfaction of the original problem.5 A computer program to carry out a large set of simultaneous, linear algebraic equation solved by Gauss elimination was coded with FORTRAN programming language.6 In the paper, permeability identification procedure was based upon an output error criterion where an existing estimate of the coefficient of permeability was iteratively improved until the calculated phreatic surface was sufficiently close to that of the measured output.
在堆石坝的规划设计和施工中,坝体内渗流或坝基渗漏是一个重要问题。由于堆石坝的经济和安全性能,有必要对堆石坝及其地基中的渗流量进行计算。本文的研究结果如下:1.渗流问题采用稳态渗流。2在这种情况下,可以采用Nenman(1973)提出的饱和-非饱和有限元方法。利用牛顿-拉夫森迭代算法得到一个近似的浸润面,因为浸润面上的压力必须为零,因为它暴露在大气中。3用三维等参元的形状,说明了未知变量Phi的变化。4利用稳态流动的天平写出控制方程,并在试探函数展开的假设下进行有限元离散,使用控制方程的弱公式或泛函的变分陈述来最小化原始问题的满意度。5一个计算机程序,执行大量的同时,用FORTRAN编程语言编写了高斯消去法求解的线性代数方程。6在本文中,渗透率识别过程基于输出误差准则,迭代地改进现有的渗透率系数估计,直到计算的潜水面与测量的输出足够接近。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takefumi Nakazono: "Analysis of Unsteady Heat Conduction in Concrete Specimens Using 3-D FEM" Proceeding of the Sixth International Offshore and Polar Engineering Conference. 566-571 (1996)
Takefum​​i Nakazono:“使用 3-D FEM 分析混凝土样本中的非稳态热传导”第六届国际近海和极地工程会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hidehiko OGATA: "Simple Systematization of a Curing Method for Preventing Temperature Cracking on Box Culvert Wall" Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering. 180. 49-57 (1995)
Hidehiko OGATA:“防止箱涵墙温度开裂的固化方法的简单系统化”日本灌溉、排水和填海工程学会会刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hitone Inagaki: "Optimization of Fuzzy Membership Functions Using the Random-Search Method and Its Application to Direct Digital Control in Pipelines" Proceedings of the Sixth International Offshore and Polar Engineering Conference. (Accepted). (1996)
Hitone Inagaki:“使用随机搜索方法优化模糊隶属函数及其在管道直接数字控制中的应用”第六届国际近海和极地工程会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takefumi Nakazono: "Analysis of Unsteady Heat Conduction in Concrete Specimens Using 3-D FEM" Proceedings of the Sixth International Offshore and Polar Engineering Conference. (Accepted). (1996)
Takefum​​i Nakazono:“使用 3-D FEM 分析混凝土样本中的非稳态热传导”第六届国际近海和极地工程会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mahmudul Alam Chowdhury: "Estimation of the Parameters of Seepage through an Earth Dam" Proceedings of the Sixth International Offshore and Polar Engineering Conference. 477-482 (1996)
Mahmudul Alam Chowdhury:“土坝渗流参数的估计”第六届国际近海和极地工程会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUNITAKE Masato其他文献

KUNITAKE Masato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUNITAKE Masato', 18)}}的其他基金

Studies on Good Use of Inferior-Quality Aggregates in Concrete Structures for Agriculture
农业混凝土结构中劣质骨料的利用研究
  • 批准号:
    02302083
  • 财政年份:
    1990
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Estimation of properties and yield criterion of wood by utilizing multi-scale finite element method
利用多尺度有限元法估算木材的性能和屈服准则
  • 批准号:
    19K15319
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了