Hyper-Kahler多様体と無限次元ゲージ理論

超卡勒流形和无限维规范理论

基本信息

  • 批准号:
    07740059
  • 负责人:
  • 金额:
    $ 0.7万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

筆者はこれまでの研究により、超ケーラー商構成法により、新たなアインシュタイン多様体を構成してきたが、本年度はこの超ケーラー商構成法を無限次元に拡張することを試みた。これは、これまでゲージ理論において、モジュライ空間を構成するために使われていたものを一般化し、興味深い多様体を造り出すことを目標とする。特に無限次元のAffine空間にHilbert Lie群が作用している場合が重要である。このとき、筆者はHilbert Lie群の作用から定義されるHilbert空間のある作用素がFredholm型であることに着目し、超ケーラー商構成法を無限次元においても、かなり自由に使えるように一般化することに成功した。これを用いて、まずケーラー商構成法により、無限次元Hilbert空間のHilbert Lie群による商として、無限次元のGrassmann多様体を構成した。この無限次元のGrassmann多様体とは無限次元Hilbert空間において、いわば∞/2次元の平面全体のなす無限次元多様体である。更に筆者は超ケーラー商構成法によりこのGrassmann多様体の余接束を超ケーラー多様体として構成した。この超ケーラー多様体は別の複素構造ではあるBanach Lie群の複素Adjoint Orbitとしてとらえることができる。この超ケーラー多様体にはその超ケーラー構造を保つ自然なS^1作用があり、有限次元のGrassmann多様体の余接束はすべてこのS^1作用の固定点集合となっている。つまりこの無限次元の超ケーラー多様体は非常に普遍的な性格を持っている。無限次元のGrassmann多様体はKdV-typeの方程式との関連が重要である。筆者はこのGrassmannの拡張として得られた超ケーラー多様体に対応するKdV-typeの方程式の拡張を調べている。これはHiggs束と呼ばれているvector束の拡張を自然にhyper-Kahler部分多様体として含んでいると期待される。
In the current year, there is a limit to the number of factors in the study of the law, the number of people who have studied the law, the number of people who have made a study of the law, the number of people who have made a study of the law, the number of people who have made a study of the law, the number of people who have made a study of the law, the number of people who have made a study of the law, and the number of people who have made a study of the law. In order to make the equipment more general and more flavor-rich, the multi-body system is used to make the equipment more general and more interesting. Special restrictions on dimensional Affine space and Hilbert Lie group functions are required to match important applications. The definition of the Hilbert Lie group function of the customer and the customer defines the function of the Fredholm type of the Hilbert space phone, the target of the Fredholm model, the limit of the number of variables in the license plate, and the freedom of the license to make the license license more general. For commercial applications, for commercial applications, for unlimited-dimensional Hilbert space, for Hilbert Lie groups, for limited-dimensional Grassmann, and for limited-dimensional Grassmann multibody systems. Limited dimensional Grassmann multidimensional Hilbert space closures, dimensional ∞

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

後藤 竜司其他文献

On hyper-Kähler manifolds of type A[∞]
关于 A[∞] 型超凯勒流形
  • DOI:
    10.11501/3095286
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤 竜司
  • 通讯作者:
    後藤 竜司

後藤 竜司的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('後藤 竜司', 18)}}的其他基金

一般化されたケーラー幾何学の新展開
广义凯勒几何的新进展
  • 批准号:
    23K25771
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
一般化されたケーラー幾何学の新展開
广义凯勒几何的新进展
  • 批准号:
    23H01074
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three problems of generalized complex geometry and generalized Kahler geometry
广义复几何和广义卡勒几何三问题
  • 批准号:
    20K20878
  • 财政年份:
    2020
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
超ケーラー多様体
超级卡勒歧管
  • 批准号:
    09740057
  • 财政年份:
    1997
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
Hyper-Kahler多様体の研究
超卡勒流形的研究
  • 批准号:
    06740065
  • 财政年份:
    1994
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了