Non-commutative Valuation Rings and Applications to their Global Theories Quantum Groups
非交换估值环及其全局理论量子群的应用
基本信息
- 批准号:09640044
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main outcomes are classified into the following three :1.The classifications of prime and primary ideals in Dubrovin valuation rings.We can classified the set of prime ideals in Dubrovin valuation rings into four different types by using the cocepts of prime segments and of limit primes. We found that there were five different types of primary ideals. These classifications are applied for the classifications of prime and primary ideals in P.I.Prufer orders. In addition to this, we also applied the above results to classification of Gabriel topologies on Dubrovin valuation rings.2.We could find a necessary and sufficient conditions for the skew group rings to be semi-hereditary and Prufe by using the properties of the coefficient ring and goup.3.We studied the structure of semihereditary orders which are integral ove commutative valuation rings. We knew that there were five different type of cyles among the set of all maximal ideals. With these cycles's properties, we could investigate the exact numbers of overring of a given semi-hereditary order and the properties of the Jacobson radical. Furthermore, we found a lot of semi-hereditary maximal orders which are not prufer orders.
1. Dubrovin赋值环中素理想和准素理想的分类利用素段和极限素的概念,我们可以将Dubrovin赋值环中的素理想集分为四类。我们发现有五种不同类型的基本理想。这些分类被应用于P.I.Prufer序中素理想和准素理想的分类。此外,还将上述结果应用于Dubrovin赋值环上Gabriel拓扑的分类; 2.利用系数环和群的性质,得到了斜群环是半遗传的和Prufe的充要条件; 3.研究了交换赋值环上半遗传序的结构.我们知道在所有极大理想的集合中有五种不同类型的圈。利用这些圈的性质,我们可以研究给定半遗传序的上环的确切个数以及Jacobson根的性质。此外,我们还发现了许多非Prufer序的半遗传极大序。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
丸林英俊: "Skew group rings which are semi-hereditary orders and Prufer orders"Algebra and Representation Theory. 3. 259-275 (2000)
Hidetoshi Marubayashi:“半遗传阶和普鲁弗阶的斜群环”代数和表示理论 3. 259-275 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
丸林英俊: "A cleasification of prime segments in simple rings"Proc.A.M.S.. (accepted).
Hidetoshi Marubayashi:“简单环中素数段的净化”Proc.A.M.S.(已接受)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Marubayashi: "Skew group rings which are semi-hereditary and Prufer orders"Algebra and Representation Theory. 3. 259-275 (2000)
H.Marubayashi:“半遗传性和普鲁弗阶的斜群环”代数和表示论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Marubayashi: "On semi-hereditary orders integral over commutative valuation rings"Journal of Algebra. (to appear).
H.Marubayashi:“论交换估价环上的半遗传阶积分”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
丸林英俊: "Dubrovin Valuation Properties of Skew Group Rings" Communications in Algebra. 26・1. 293-307 (1998)
Hidetoshi Marubayashi:“斜群环的杜布罗文估价性质”代数通讯 26・1 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARUBAYASHI Hidetoshi其他文献
MARUBAYASHI Hidetoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARUBAYASHI Hidetoshi', 18)}}的其他基金
A study of integrated orders and its applications
综合订单及其应用研究
- 批准号:
21540056 - 财政年份:2009
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of the structure of Ore extension and its application
矿石延展结构研究及其应用
- 批准号:
17540031 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic Study of Prufer Orders and Semi-hereditary Orders
普鲁弗令和半世袭令的综合研究
- 批准号:
13640030 - 财政年份:2001
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Upper bound of the number of prime ideals
素理想数的上限
- 批准号:
466013-2014 - 财政年份:2014
- 资助金额:
$ 0.96万 - 项目类别:
University Undergraduate Student Research Awards
Prime Ideals and Subalgebras of Noetherian Hopf Algebras
Noetherian Hopf 代数的素理想和子代数
- 批准号:
9623579 - 财政年份:1996
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Mathematical Sciences: Enveloping Superalgebras, Quantum Groups, and Their Prime Ideals
数学科学:涵盖超代数、量子群及其基本理想
- 批准号:
9302712 - 财政年份:1993
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
VPW: Prime Ideals and Indecomposable Cohen - Macaulay Modules (Algebra)
VPW:素理想和不可分解科恩 - 麦考利模块(代数)
- 批准号:
9250116 - 财政年份:1992
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
On Various Chain Conditions For Prime Ideals
论素理想的各种链条件
- 批准号:
8001597 - 财政年份:1980
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant
Prime -- Especially Complete Intersection Prime -- Ideals InNoetherian Rings
Prime——特别是完全相交 Prime——Noetherian 环中的理想
- 批准号:
7801503 - 财政年份:1978
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Commutative Algebra: on Various Chain Conditions For Prime Ideals
交换代数:关于素理想的各种链条件
- 批准号:
7700951 - 财政年份:1977
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant