Prime Ideals and Subalgebras of Noetherian Hopf Algebras
Noetherian Hopf 代数的素理想和子代数
基本信息
- 批准号:9623579
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-15 至 2000-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9623579 Letzter This award supports the research of Professor E. Letzter to work in non-commutative ring theory with special emphasis on problems arising from the theory of quantum groups. In particular, Professor Letzter will study prime and primitive ideals in finitely generated noncomutative Noetherian bialgebras, Hopf superalgebras, and iterated skew polynomial rings. He hopes to apply this work to studying multiparametric quantum function algebras in the root-of-unity case. This is research in the subfield of algebra called non-commutative ring theory. Algebra can be thought of as the study of symmetry in the abstract. As such, algebra has direct applications to areas of physics and chemistry. In fact, much of non-commutative ring theory generalizes structures found in quantum mechanics and this proposal continues to explore areas that connect directly with modern quantum field theory.
9623579莱茨特该奖项支持E.Letzter教授致力于非对易环论的研究,特别强调量子群理论所产生的问题。特别是,Letzter教授将研究有限生成的非交换Notherian双代数、Hopf超代数和迭代斜多项式环中的素理想和本原理想。他希望将这项工作应用于研究单位根情况下的多参数量子函数代数。这是代数子领域的研究,称为非对易环论。代数可以看作是对抽象对称性的研究。因此,代数在物理和化学领域有直接的应用。事实上,许多非对易环理论概括了量子力学中发现的结构,该提议继续探索与现代量子场论直接相关的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Letzter其他文献
Edward Letzter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Letzter', 18)}}的其他基金
REU SITE: Interactions Between Algebra, Computation, and Mathematical Physics
REU 站点:代数、计算和数学物理之间的相互作用
- 批准号:
0138991 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Enveloping Superalgebras, Quantum Groups, and Their Prime Ideals
数学科学:涵盖超代数、量子群及其基本理想
- 批准号:
9302712 - 财政年份:1993
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905675 - 财政年份:1989
- 资助金额:
$ 6万 - 项目类别:
Fellowship Award
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Republican Ideals and the Ancient Constitution in Seventeenth-Century England
共和理想与十七世纪英国古代宪法
- 批准号:
23K01234 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Essays on Political Possibility: Genealogy, Ideology, and Ideals
政治可能性论文:谱系、意识形态和理想
- 批准号:
2901819 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Studentship
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
- 批准号:
2301526 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
The Ambivalence of Utopian Ideals in Modern Japan: Christianity, Denmark, and Happiness
现代日本乌托邦理想的矛盾心理:基督教、丹麦和幸福
- 批准号:
23K12027 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Principal ideals of quadratic fields
二次域的主理想
- 批准号:
574326-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
University Undergraduate Student Research Awards
Powers of Edge Ideals
边缘理想的力量
- 批准号:
574684-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
University Undergraduate Student Research Awards
The study on ring theoretic properties and Groebner basis of Specht ideals
Specht理想的环理论性质及Groebner基础研究
- 批准号:
22K03258 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Vertex Decomposability and Cohen-Macaulyness of Toric Ideals of Graphs
图环面理想的几何顶点可分解性和Cohen-Macaulyness
- 批准号:
575811-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Symbolic Defect of Ideals of Points
点理想的符号缺陷
- 批准号:
573935-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
University Undergraduate Student Research Awards