Geometry of Total Curvature on Negatively Curved Manifolds

负曲流形上总曲率的几何

基本信息

  • 批准号:
    09640099
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

In 1997 we studied how the total curvature changes through the mean curvature flow by using the method of Hamilton and Huisken. As a by-product, we got a Bernstein type thorem for minimal sub-manifolds in the Euclidean space.Theorem 1 Suppose that u=(u^1, ..., u^p) : R^n*R^p satisfies the system of minimal surface equation and its graph graph(u) has flat normal connection. If<<numerical formula>>then all u^i are linear functions.In 1998, we extended the halfspace theorem for minimal hypersurfaces by Hoffman and Meeks (1990) to hypersurfaces with 0 higher order mean curvature. Let M^n * R^<n+1> be a hypersurface. We define k-th mean curvatue H_k byH_k= SIGMA__<i_1<...<i_k> lambda_1 ... lambda_<ik>,where lambda_1, ..., lambda_n are principal curvatures of M.Suppose k is odd. We call M elliptic type if the following condition holds everywhere : */(mbda) H_k > 0 for *i. Note that this condition does not depend on the choice of the unit normal vector since k is odd.Theorem 2 Let k be an odd integer, n an ineger satisfying 1 <less than or equal> k < n <less than or equal> 2k. If M^n * R^<n+1> is a properly immersed elliptic type complete hypersurf ace with H_k = 0, then M cannot be contained in any Euclidean halfspace.
1997年我们用汉密尔顿和Huisken的方法研究了总曲率如何通过平均曲率流而变化。作为副产品,我们得到了欧氏空间中极小子流形的一个伯恩斯坦型定理:定理1设u=(u^1,.,u^p):R^n*R^p满足极小曲面方程组且其图(u)具有平坦法联络。1998<numerical formula>年,我们将霍夫曼和米克斯(1990)关于极小超曲面的半空间定理推广到高阶平均曲率为0的超曲面。设M^n * R^&lt;n+1&gt;是超曲面.我们定义第k阶平均曲率H_k为H_k= SIGMA_i &lt;i_1&lt;. <i_k>联系我们lambda_<ik>,其中lambda_1,.,λ_n是M的主曲率。我们称M为椭圆型,如果以下条件处处成立:*/(mbda)H_k &gt; 0,对于 *i.定理2设k为奇整数,n为满足1 <less than or equal>k &lt;n2 <less than or equal>k的整数。若M^n * R^&lt;n+1&gt;是H_k = 0的真浸入椭圆型完备超曲面,则M不能包含在任何欧氏半空间中.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takashi Okayasu: "An extension of Chern-Lashof theorem to other space forms" Proceedings of the Pacific Rim Geometry Conference, International Press. (to appear).
Takashi Okasu:“陈-拉斯霍夫定理到其他空间形式的延伸”环太平洋几何会议记录,国际出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAYASU Takashi其他文献

OKAYASU Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAYASU Takashi', 18)}}的其他基金

Development of three-dimensional tillage simulator forvarious soil
多种土壤三维耕作模拟器的研制
  • 批准号:
    23780258
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Clarification of soil compaction mechanism by farm machinery in the Isahaya-bay reclamation field
谏早湾围垦场农机压实土壤机理的明确
  • 批准号:
    21780231
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on the construction of hypersurfaces with constant scalar curvature by using geometric analysis
利用几何分析构造常标量曲率超曲面的研究
  • 批准号:
    19540062
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the structure of hypersurfaces with constant scalar curvature
常标量曲率超曲面结构的研究
  • 批准号:
    15540057
  • 财政年份:
    2003
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Bernstein type theorems for minimal submanifolds
最小子流形的Bernstein型定理研究
  • 批准号:
    11640068
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了