Study of the structure of hypersurfaces with constant scalar curvature
常标量曲率超曲面结构的研究
基本信息
- 批准号:15540057
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the Euclidean spaces the known examples of complete hypersurfaces with positive constant scalar curvature are only spheres, generalized cylinders S^p×R^<n-p> and the rotational hypersurfaces. In this research we constructed infinitely many new examples of complete hypersurfaces with constant positive scalar curvature in the Euclidean spaces.For the O(p+1)×O(q+1)-invariant hypersurfaces, the equation representing its scalar curvature is constant S is(I){dx/ds=cosα, dy/ds=sinα, dα/ds=(p(p-1)((sinα)/x)^2-2pq(sinα)/x(cosα)/y+q(q-1)((cosα)/y)^2-S)/(2(q(cosα)/y-p(sinα)/x)),where α is the angle between the tangent vector (x', y') and the x-axis.The key point of this study is that we can compare the solution with another ODE which is explicitly integrable.Theorem Suppose that p 【less than or equal】 q + 1 and S > 0 (p 【greater than or equal】 2). Let 0 < x_0 【less than or equal】 √<p(p -1)/S> and 0 < y_0 【less than or equal】 √<q(q -1)/S>. Then the ODE system has a global solution γ(s) = (x(s), y(s)) ∈ R_+ × R_+ on (-∞, ∞) for the initial condition x(0) = x_0, y(0) = y_0 and α(0) = 0. Therefore M_γ become a complete hypersurface in R^<p+q+2> with constant scalar curvature S.Theorem Suppose that p > q + 1 and S > 0 (q 【greater than or equal】 2). Let 0 < x_0 【less than or equal】 √<(p -1)(q -1)/S> and 0 < y_0 【less than or equal】 √<q(q -1)/S>. Then the ODE system has a global solution γ(s) = (x(s), y(s)) ∈ R_+ × R_+ on (-∞, ∞) for the initial condition x(0) = x_0, y(0) = y_0 and α(0) = 0. Therefore M_γ become a complete hypersurface in R^<p+q+2> with constant scalar curvature S.
在欧几里得空间中,具有正常数标量曲率的完全超曲面的已知示例仅是球体、广义圆柱体 S^p×R^<n-p> 和旋转超曲面。在本研究中,我们在欧几里得空间中构造了无穷多个具有恒定正标量曲率的完全超曲面的新例子。对于O(p+1)×O(q+1)不变超曲面,表示其标量曲率的方程为常数S is(I){dx/ds=cosα, dy/ds=sinα, dα/ds=(p(p-1)((sinα)/x)^2-2pq(sinα)/x(cosα)/y+q(q-1)((cosα)/y)^2-S)/(2(q(cosα)/y-p(sinα)/x)),其中α是切向量(x',y')与x轴之间的角度。本研究的重点是我们可以将该解决方案与另一个进行比较 显式可积的 ODE。 定理 假设 p 【小于或等于】q + 1 且 S > 0(p 【大于或等于】2)。令 0 < x_0 【小于等于】 √<p(p -1)/S> 且 0 < y_0 【小于等于】 √<q(q -1)/S>。那么对于初始条件 x(0) = x_0, y(0) = y_0 和 α(0) = 0,ODE 系统在 (-∞, ∞) 上有一个全局解 γ(s) = (x(s), y(s)) ∈ R_+ × R_+。因此 M_γ 成为 R^<p+q+2> 中具有恒定标量曲率 S 的完全超曲面。定理假设 p > q + 1 且 S > 0 (q【大于或等于】2)。令 0 < x_0 【小于等于】 √<(p -1)(q -1)/S> 且 0 < y_0 【小于等于】 √<q(q -1)/S>。那么对于初始条件 x(0) = x_0、y(0) = y_0 和 α(0) = 0,ODE 系统在 (-∞, ∞) 上有一个全局解 γ(s) = (x(s), y(s)) ∈ R_+ × R_+。因此 M_γ 成为 R^<p+q+2> 中具有恒定标量曲率 S 的完全超曲面。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Gap Theorem for Complete four-dimensional Manifolds with δW+=0
δW+=0的完备四维流形的间隙定理
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:岡安 隆
- 通讯作者:岡安 隆
On compact hypersurfaces with constant scalar curvature in the Euclidean space
欧几里得空间中具有恒定标量曲率的紧超曲面
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Jutila;Y.Motohashi;M.Miyanishi;Takashi Okuyama;J.Komeda;N.Aoki;N.Komuro;岡安 隆
- 通讯作者:岡安 隆
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKAYASU Takashi其他文献
OKAYASU Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKAYASU Takashi', 18)}}的其他基金
Development of three-dimensional tillage simulator forvarious soil
多种土壤三维耕作模拟器的研制
- 批准号:
23780258 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Clarification of soil compaction mechanism by farm machinery in the Isahaya-bay reclamation field
谏早湾围垦场农机压实土壤机理的明确
- 批准号:
21780231 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on the construction of hypersurfaces with constant scalar curvature by using geometric analysis
利用几何分析构造常标量曲率超曲面的研究
- 批准号:
19540062 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Bernstein type theorems for minimal submanifolds
最小子流形的Bernstein型定理研究
- 批准号:
11640068 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Total Curvature on Negatively Curved Manifolds
负曲流形上总曲率的几何
- 批准号:
09640099 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study on vector bundles and applications to stability and freeness of logarithmic vector fields along a hypersurface
向量丛研究及其在超曲面对数向量场稳定性和自由度中的应用
- 批准号:
15F15318 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of algebraic local cohomology to hypersurface singularities
代数局部上同调在超曲面奇点中的应用
- 批准号:
15K17513 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research for duality and transformations of generic conformally flat hypersurfaces.
通用共形平坦超曲面的对偶性和变换研究。
- 批准号:
26400076 - 财政年份:2014
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Reconstruction and Recognition Problems for Hypersurface Singularities
超曲面奇点的重建与识别问题
- 批准号:
DP140100296 - 财政年份:2014
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Projects
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
- 批准号:
234520279 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Research Grants
Mathematical analysis on fluid-flow on a moving hypersurface
运动超曲面上流体流动的数学分析
- 批准号:
25887048 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The structures of hypersurface simple K3 singularities
超曲面简单K3奇点的结构
- 批准号:
22540060 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on conformally flat hypersurfaces
共形平坦超曲面研究
- 批准号:
21540102 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining ideals of projective varieities and their embedding structure
定义射影簇的理想及其嵌入结构
- 批准号:
20540039 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




