Geometric reserch of closed differential forms on manifolds
流形上闭微分形式的几何研究
基本信息
- 批准号:09640101
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research project is to study geometric properties of closed differential forms on manifolds. First, for each generator x of the singular cohomology group of a symmetric space M, we find a closed differential form which corresponds x under the de Rham isomorphism. As a result of the study we can determine the structure of the cohomology ring of M and also investigate the global geometric structure using phi.In the case when M is the complex projective space or the quaternionic projective space, it is well known that the corresponding geometric structures are Kaler structure and quaternionic Kahler structure respectively, In the term of this project we have studied the following :(1) Compute the volumes of the symmetric structures,(2) Study the 8-form on Cayley projective space and exceptional symmetric space EIII which corresponding to the generator of the cohomology group,(3) Compute the 4-forms on quaternionic Kahler symmetric space which correspond to the first Pontrjagin classes.Next we studied the calibration on R^n. The classifications of the calibrations on R^n are given for n <less than or equal> 8 but the problem is difficult for n <greater than or equal> 9. Because the most useful calibrations on are highly symmetric we calculate the invariant calibrations on R^9 and R^<10> under the orthogonal groups.The above problems are motivated by studing the differentiable structure of-the orbit structure of C-manifolds, In the term of this project we also studied the structure of the equivariant diffeomorphism groups of a C-manifold with codimension one orbit. I collaborated with Fukui in this point of view.The research project supported the following works by the investigators :(1) Asada studied the global structure of the loop groups,(2) Mukai and Kachi computed the homotopy groups of the projective spaces,(3) Tamaki studied the spectral sequences.
本研究计画的目的是研究流形上闭微分形式的几何性质。首先,对于对称空间M的奇异上同调群的每个生成元x,我们找到一个闭微分形式,它对应于x下的de Rham同构。研究的结果是确定了M的上同调环的结构,并利用φ研究了M的整体几何结构,当M是复射影空间或四元数射影空间时,其对应的几何结构分别是Kaler结构和四元数Kahler结构。(1)计算对称结构的体积,(2)研究Cayley射影空间和例外对称空间EIII上对应于上同调群生成元的8-形式,(3)计算四元数Kahler对称空间上对应于第一类Pontrjagin类的4-形式。给出了n = 8时R^n上标定的分类<less than or equal>,但n = 9时标定的分类问题比较困难<greater than or equal>.由于上最有用的标度是高度对称的,所以我们计算了R ^9和R^9上<10>的正交群下的不变标度,上述问题是由研究C-流形的轨道结构的可微结构所激发的,在本项目中我们还研究了余维为1轨道的C-流形的等变同态群的结构。我和福井在这一点上进行了合作。该研究项目支持了研究人员的以下工作:(1)浅田研究了循环群的整体结构,(2)Mukai和Kachi计算了投射空间的同伦群,(3)Tamaki研究了谱序列。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Abe and I.Yokota: "Poalization of spaces E^6/(UU)Spin(10)),E^7/(UU)E_6),E^8/(UU)E_7) and their volumes" Tokyo Math.Jour.20. 73-86 (1997)
K.Abe 和 I.Yokota:“空间 E^6/(UU)Spin(10)),E^7/(UU)E_6),E^8/(UU)E_7) 及其体积的极化” 东京数学
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Asada: "A remark on infinite dimensional Gaussina integrsal on a Sobolev space." J.Fac.Sci.Shinshu univ.32. 61-67 (1997)
A.Asada:“关于索博列夫空间上无限维高斯积分的评论。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Mukai: "Some homotopy groups of the double suspension of the real progectivespaces RP^6" Matematica Contemporanea,Brasil.
J.Mukai:“实预空间 RP^6 的双悬浮的一些同伦群”Matematica Contemporanea,巴西。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Asada: "A remark on infinite dimensional Gaussina integrsal on a Sobolev space." J.Fac.Sci.Shinshu univ.Vol32. 61-67 (1997)
A.Asada:“关于索博列夫空间上无限维高斯积分的评论。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Asada: "Hodge operators of mapping spaces." Group21,Physical Applications and Mathematical Aspects of Geometry,Groups and Algebras,. 925-928 (1997)
A.Asada:“映射空间的 Hodge 算子。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ABE Kojun其他文献
ABE Kojun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ABE Kojun', 18)}}的其他基金
Automorphism group of a smooth G-manifold and its applications.
光滑G流形的自同构群及其应用。
- 批准号:
21540074 - 财政年份:2009
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The autornorphisrn group of smcoth G-manifokls andals applications
smcoth G-manifokls 和应用程序的 autornorphisrn 组
- 批准号:
18540077 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of automorphisms preserving geometric structure of manifolds
保持流形几何结构的自同构研究
- 批准号:
16540058 - 财政年份:2004
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of an Analysis Method for Non-inductively driven current profile based on the Temporal-Differential form of the Grad-Shafranov equation
基于 Grad-Shafranov 方程的时间微分形式的无感驱动电流分布分析方法的开发
- 批准号:
18560797 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)