The autornorphisrn group of smcoth G-manifokls andals applications
smcoth G-manifokls 和应用程序的 autornorphisrn 组
基本信息
- 批准号:18540077
- 负责人:
- 金额:$ 1.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let M be a smooth manifold which has a smooth action of a compact Lie group G. Let Lip_G(M) denote the group of equivariant Lipschitz homeomorphisms of M. We can introduce two kind of topologies on Lip_G(M). Let Lip_G(M), (resp. L_G(M)) denote the identity component of the identity of Lip_G(M) when Lip_G(M) has the compact open Lipschitz topology (resp. compact open topology). We investigate the first homology group of H_I(Lip_G(M)_O).When M is a principal G-manifold or G is a finite group, it is known that the group LiP_G(M)_O is perfect. When M is the complex n-dimensional space C^n with the canonical U(n)-action,H_1(L_G(M)) is isomorphic to the vector space of some real valued functions which has continuous moduli.During the study duration, we investigate the case where M has a G-manifold with codimension one orbit. First we proved that Lip_G(V)_o is perfect when V is a representation space with codimension one orbit. By using this result and analyzing the behavior of equivariant Lipschitz homeomorphism around the singular orbit, we calculate H_1(Lip_G(M)-O) for any smooth Gmanifold with codimension one orbit. The result shows that the first homology group of the automorphism group of smooth Gmanifold is quite depends on the category such as smooth, compact open or compact open Lipschitz. We also calculate the first homology group of the group of equivariant diffeomorphisms of 3-dimensional smooth S^Imanifold. The result has recently published in the foreign journal.
设M是一个光滑流形,它具有紧李群G的光滑作用。设Lip_G(M)表示M的等变Lipschitz同胚群.在Lip_G(M)上可以引入两种拓扑.设Lip_G(M),(resp. L_G(M))表示当Lip_G(M)具有紧开Lipschitz拓扑时Lip_G(M)的单位元的单位分支.紧凑开放拓扑)。研究了H_I(Lip_G(M)_O)的第一同调群,当M是主G-流形或G是有限群时,证明了群LiP_G(M)_O是完全群.当M是具有典范U(n)作用的复n维空间C^n时,H_1(LG(M))同构于某些具有连续模的真实的值函数的向量空间。在研究期间,我们研究了M具有余维为一个轨道的G-流形的情况。首先证明了当V是余维为1轨道的表示空间时,Lip_G(V)_o是完美的。利用这一结果并分析了等变Lipschitz同胚在奇异轨道周围的行为,我们计算了任意余维为1轨道的光滑G流形的H_1(Lip_G(M)-O)。结果表明,光滑G流形的自同构群的第一同调群与光滑、紧开或紧开Lipschitz等范畴有很大的依赖关系。我们还计算了三维光滑S^I流形的等变同同态群的第一同调群。这一成果最近发表在国外期刊上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the first homology of the group of equivariant Lipschitz Hornernorphisms
等变 Lipschitz Hornernorphism 群的第一个同调
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kojun;Abe;Kazuhiko,Fukui;Takeshi;Miura
- 通讯作者:Miura
On the first homology group of Lipschitz homeornorphism group
论Lipschitz同态群的第一同调群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kojun;Abe
- 通讯作者:Abe
On the first homology of the group of equivariant Lipschitz homeomorphisms
等变 Lipschitz 同胚群的第一个同调
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kojun Abe;Kazuhiko Fukui;Takeshi Miura
- 通讯作者:Takeshi Miura
On Lie algebras of vector fields of manifolds with singularities.
关于具有奇点的流形向量场的李代数。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kojun Abe;Suguru Fujiwara
- 通讯作者:Suguru Fujiwara
On equivariant Lipschitz horneornorphisrns
关于等变 Lipschitz Hornornorphisrns
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kojun;Abe;Kazuhiko;Fukui
- 通讯作者:Fukui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ABE Kojun其他文献
ABE Kojun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ABE Kojun', 18)}}的其他基金
Automorphism group of a smooth G-manifold and its applications.
光滑G流形的自同构群及其应用。
- 批准号:
21540074 - 财政年份:2009
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of automorphisms preserving geometric structure of manifolds
保持流形几何结构的自同构研究
- 批准号:
16540058 - 财政年份:2004
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric reserch of closed differential forms on manifolds
流形上闭微分形式的几何研究
- 批准号:
09640101 - 财政年份:1997
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Automorphism group of a smooth G-manifold and its applications.
光滑G流形的自同构群及其应用。
- 批准号:
21540074 - 财政年份:2009
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)