Research of equations with time delay
时滞方程的研究
基本信息
- 批准号:09640235
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head investigator and 8 investigators studied some qualitative properties of solutions in equations with time delay, and obtained many results on the subject. The contents of a part of results obtained are summarized in the following :First we treated functional differential equations which are typical ones as equations with time delay, and obtained some results on stability properties and the existence of almost periodic solutions under some conditions. Moreover, applying the degree theory we established the existence of periodic solutions for some functional differential equations with diffusion which appear as crucial models in the field of mathematical biology.Next we treated functional difference equations and characterized the summability of the fundamental solution in connection with the uniform asymptotic stability property for the solu tion. Also, we established the representation theorem of solutions in phase space, and discussed the existence of bounded solutions and the asymptotic equivalence of solutions by applying the representation theorem.Furthermore, we treated processes which belong to a more wide class than equations with time delay, and developing a part of qualitative theory for processes, we applied general results obtained for processes to get some stability properties for functional differential equations and to establish the existence of almost periodic solutions for wave equations.
主要研究者和8名研究者研究了时滞方程解的一些定性性质,得到了许多结果。所获得的部分结果的内容概括如下:首先,我们将典型的泛函微分方程视为时滞方程,并在一定条件下获得了稳定性和概周期解存在性的一些结果。其次,利用度理论证明了生物数学中一类重要模型的周期解的存在性,并讨论了一类泛函差分方程的基本解的可和性,以及解的一致渐近稳定性.建立了相空间中解的表示定理,并应用该表示定理讨论了有界解的存在性和解的渐近等价性,进而讨论了比时滞方程更广泛的一类过程,发展了过程的一部分定性理论,应用对过程的一般性结果,得到了泛函微分方程的一些稳定性性质,并建立了波动方程概周期解的存在性。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshihiro Hamaya: "Global attractivity in a discrete model with quadratic nmlinearity" Applicable Analysis. (発表予定).
Yoshihiro Hamaya:“具有二次非线性的离散模型中的全局吸引力”适用分析(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshiyuki Hino: "A generalization of processes and stabilities in abstract fumctinal differential equations" Funkcial. Ekvacioj. 41. 235-255 (1998)
Yoshiyuki Hino:“抽象函数微分方程中过程和稳定性的概括”Funkcial。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshiyuki Hino, Satoru Murakami and Taro Yoshizawa: "Existence of almost periodic solutions of some functional differential equations with infinite delay in a Banach space" Tohoku Math.J.vol.49. 133-147 (1997)
Yoshiyuki Hino、Satoru Murakami 和 Taro Yoshizawa:“Banach 空间中一些具有无限延迟的函数微分方程的几乎周期解的存在”Tohoku Math.J.vol.49。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Satoru Murakami: "Representation of solutions of linear functional difference equations in phase space" Nonlinear Anal.T.M.A.vol.30. 1153-1164 (1997)
村上悟:“相空间中线性泛函差分方程解的表示”非线性分析.T.M.A.vol.30。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Saber Elaydi and Satoru Murakami: "Uniform asymptotic stability in linear Volterra difference equations" J.Difference Eqs.Appl.vol.3. 203-218 (1998)
Saber Elaydi 和 Satoru Murakami:“线性 Volterra 差分方程中的一致渐近稳定性”J.Difference Eqs.Appl.vol.3。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURAKAMI Satoru其他文献
Stability properties of linear Voltera integrodifferential equations in a Banach space
Banach 空间中线性 Voltera 积分微分方程的稳定性性质
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
HINO Yoshiyuki;MURAKAMI Satoru - 通讯作者:
MURAKAMI Satoru
MURAKAMI Satoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURAKAMI Satoru', 18)}}的其他基金
Study of the solution semigroup for integral equations and related topics
积分方程解半群的研究及相关课题
- 批准号:
22540211 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of stability properties for positive linear equations with delay and related topics
时滞正线性方程的稳定性研究及相关课题
- 批准号:
19540203 - 财政年份:2007
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formal adjoint equation for equations with time delay and its applications
时滞方程的形式伴随方程及其应用
- 批准号:
16540177 - 财政年份:2004
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A representation formula for solutions of equations with delay in the phase space and its applications
相空间时滞方程解的表示式及其应用
- 批准号:
13640197 - 财政年份:2001
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral analysis of an operator associated with equations with time delay
与时滞方程相关的算子的谱分析
- 批准号:
11640191 - 财政年份:1999
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 1.6万 - 项目类别:
Fellowship
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
- 批准号:
LE240100091 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
- 批准号:
DP240103352 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Fellowship
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
- 批准号:
EP/Z531285/1 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant














{{item.name}}会员




