Global Bifurcation Structure of Nonlinear Dynamics of Domain Motion

域运动非线性动力学的全局分岔结构

基本信息

  • 批准号:
    09640303
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

In this research project, we deal with the dynamics of domain formed by pulse solutions of the fllowing bistable system of reaction-diffusion equations :epsilontauu_1=epsilon^2u_<xx>+f(u, v), v=v_<xx>+g(u, v), where 0 < epsilon << 1 is a layer parameter and 0 < tau a relaxation one.In a joint work with Prof. Hideo Ikeda (Toyama Univ.), we have studied the bifurcation phenomena of standing pulse solutions of the above system by adopting tau as a controllable parameter. It is shown that there exist two types of destabilization of standing pulse solutions when tau decreases. One is the appearance of traveling pulse solutions through the static bifurcation and the other is that of in-phase brealbers via the Hopf bifurcation. The order of these two destabilization is discussed for piecewise-linear nonlinearitics f and g.Another joint work with Prof. Hideo Ikeda and Prof. Masayasu Mimura (Hiroshima Univ.) is devoted to the study of global bifurcation structure of standing and traveling pulse solutions of the above system. The simplification of piecewise-linear nonlinearity enables us to reveal the global branch of traveling pulse solutions. Using the singular limit analysis as epsilon * 0, the appearance of the Hopf bifurcation point on the branch is shown, from which stable propagating pulse solutions with oscillating layers (travelling breathers) arise numerically. Moreover, we have shown that(1)All traveling pulse solutions unstably bifurcate from standing pulse solutions,(2)All traveling pulse solutions bifurcated from standing pulse solutions recover their stability through the saddle-node bifurcation and the Hopf bifurcation, and they become stable for sufficiently small tau> 0.
本文研究了反应扩散方程组的脉冲解所形成的区域的动力学性质:ε u_1 = ε u_2u_<xx>+f(u,v),v=v_<xx>+g(u,v),其中0 &lt;τ &lt;&lt; 1是层参数,0 &lt;τ是弛豫参数。采用τ作为可控参数,研究了上述系统驻脉冲解的分岔现象。结果表明,当τ减小时,驻脉冲解存在两种类型的失稳。一种是通过静态分岔出现行波脉冲解,另一种是通过Hopf分岔出现同相脉冲解。这两个不稳定的顺序进行了讨论,分段线性非线性f和g。另一个联合工作与池田秀夫教授和三村教授(广岛大学)。研究了上述系统驻脉冲解和行波脉冲解的全局分歧结构。对分段线性非线性项的简化使我们能够揭示行波脉冲解的全局分支。利用奇异极限分析作为λ * 0,给出了在分支上的Hopf分岔点的出现,并从该分岔点数值地得到了具有振荡层(旅行呼吸子)的稳定传播脉冲解.此外,我们还证明了:(1)所有行波脉冲解都不稳定地从驻定脉冲解分叉出来;(2)所有从驻定脉冲解分叉出来的行波脉冲解都通过鞍结分叉和Hopf分叉恢复稳定,并且当τ&gt; 0时,它们变得稳定.

项目成果

期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Ikeda: "Parallel computation of interfacial dynamics" Gakuto International Series, Mathematical Sciences and Applications. 11巻. 52-61 (1998)
T. Ikeda:“界面动力学的并行计算”Gakuto 国际系列,数学科学与应用,第 11 卷,52-61 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ikeda: "Parallel computation of spots-and-stripes patterns formed by motile bacteria" Proceedings of Third China-Japan Joint Seminar on Numerical Mathematics. 57-72 (1998)
T.Ikeda:“运动细菌形成的斑点和条纹图案的并行计算”第三届中日数值数学联合研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D.Takahashi: "Box and ball system with a carrier and ultradiscrete modified KdV equation" J.Phys.A. 30. 733-739 (1977)
D.Takahashi:“带有载体和超离散修正 KdV 方程的盒子和球系统”J.Phys.A。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ikeda: "Global structure of travelling pulse solutions in some reaction-diffusion systems." Tohoku Mathematical Publications. 8巻. 85-92 (1998)
H. Ikeda:“某些反应扩散系统中行进脉冲解的全局结构”,东北数学出版物,第 8 卷,85-92 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ikeda: "Puarallel computation of spots-and-stripes patterns formed by motile bacteria" Proceedings of Third China-Japan Joint Seminar on Numerical Mathematics. 57-72 (1998)
T.Ikeda:“运动细菌形成的斑点和条纹图案的并行计算”第三届中日数值数学联合研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IKEDA Tsutomu其他文献

IKEDA Tsutomu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IKEDA Tsutomu', 18)}}的其他基金

Solution structure around bifurcation points of co-dimension 2
余维 2 分叉点周围的解结构
  • 批准号:
    15340038
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Physiological and ecological study on deep-sea zooplankton
深海浮游动物生理生态研究
  • 批准号:
    14209001
  • 财政年份:
    2002
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Analysis of helical waves arising in some-reaction diffusion systems
部分反应扩散系统中产生的螺旋波的数学分析
  • 批准号:
    12440032
  • 财政年份:
    2000
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis and Computation of Nonlinear Structures
非线性结构分析与计算
  • 批准号:
    05302013
  • 财政年份:
    1993
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了