Solution structure around bifurcation points of co-dimension 2
余维 2 分叉点周围的解结构
基本信息
- 批准号:15340038
- 负责人:
- 金额:$ 4.8万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Masaharu Nagayama (one of investigators of the present research project) has devised a computer code that can analyze bifurcation structures in a neighborhood of double bifurcation points. This code deals with bifurcation phenomena of pulse solutions to mono-stable reaction-diffusion systems, and is equipped with the following two functions : (1)It can find a critical point and construct its bifurcation branch, (2)It can extend existing bifurcation branches. In order to devise the code, we consider the reaction-diffusion system on a finite interval (0,L) subject to the periodic boundary condition where L is a fixed large positive number. From the phase condition we obtain the equation that determines the propagating velocity of traveling pulse, and by the Keller method we express the dependency on a parameter p included in the equation systems. The problem formularized as in the above is numerically solved by the Newton method in the computer code. We note that a solution is a set of {solutions to reaction-diffusion systems, c, p}. When a traveling pulse bifurcates from a standing pulse, there appear two zero-eigenvalues, one of which is a trivial one trivial one corresponding to parallel translation. Our code applies to not only this case but also the cases where two crucial zero-eigenvalues exist except the trivial one.The head investigator have dealt with standing and traveling combustion pulses of a mathematical model for self-propagating high-temperature syntheses including both the cooling effect and raw material supply system. Employing a piece-wise constant function for the reaction term, we have studied the existence of pulse solutions in a mathematically rigorous way, and also the collision dynamics of combustion pulses on a circle domain.
长山正治(本研究项目的研究人员之一)设计了一种计算机代码,可以分析双分叉点附近的分叉结构。该程序研究单稳态反应扩散系统脉冲解的分支现象,具有如下两个功能:(1)寻找临界点并构造其分支;(2)扩展已有的分支。为了设计程序,我们考虑了有限区间(0,L)上满足周期边界条件的反应扩散方程组,其中L是固定的大正数。从位相条件出发,我们得到了确定行波脉冲传播速度的方程,并用Keller方法表示了它对方程组中参数p的依赖关系。通过计算机代码中的牛顿法对上述公式化问题进行数值求解。我们注意到解是反应扩散系统的{解,c,p}的集合。当行波脉冲与驻波脉冲分叉时,会出现两个零本征值,其中一个是平移对应的平凡本征值。我们的代码不仅适用于这种情况,而且还适用于除了平凡的零本征值之外存在两个关键零本征值的情况。首席研究员处理了包括冷却效应和原料供应系统在内的自传播高温合成数学模型的驻留和行进燃烧脉冲。采用分段常数函数作为反应项,用严格的数学方法研究了脉冲解的存在性,以及圆域上燃烧脉冲的碰撞动力学。
项目成果
期刊论文数量(63)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A variational approach to singular perturbation problems in reaction-diffusion systems
反应扩散系统中奇异扰动问题的变分方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Maeda;A.Inoue;Junjiro Noguchi et al.;M.-N.Ki;Hiroyuki Shibusawa;S.Izumiya;T. Katsura;S.Ei
- 通讯作者:S.Ei
M.Nagayama: "A theoretical and experimental study on the unidirectional motion of a camphor disk"Physica D. (to appear).
M.Nagayama:“樟脑盘单向运动的理论和实验研究”Physica D.(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Bifurcation of helical wave from traveling wave
螺旋波与行波的分叉
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Kosugi;Y.Marutani;H.Ninomiya;M.Fila;S.Kosugi;Y.Marutani;H.Ninomiya;M.Fila;S.Kosugi;M.Fila;Y.Marutani;T.Nishida;S.Kosugi;S.Ei;S.Kosugi;J.-S.Guo;Y.Morita;H.Ninomiya;Y.Sumino;T.Nishida;S.Kosugi;S.Ei;S.Kosugi;J.-S.Guo;H.Ninomiya;Y.Sumino;T.Nishida;S.Kosugi;S.Kosugi;J.-S.Guo;H.Ninomiya;Y.Sumino;T.Ikeda
- 通讯作者:T.Ikeda
Hideo Ikeda: "On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows"Communications on Pure and Applied Analysis. vol.2 no.3. 381-390 (2003)
Hideo Ikeda:“Oseen 螺旋流中出现的非局部边界值问题的解决方案的全局分支”纯粹与应用分析通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On p-homogeneous systems of differential equations and their linear perturbations
关于 p-齐次微分方程组及其线性扰动
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Fila;H.Ninomiya and J.L.Vazquez;M.Fila and H.Ninomiya;H.Ninomiya and H.F.Weinberger
- 通讯作者:H.Ninomiya and H.F.Weinberger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IKEDA Tsutomu其他文献
IKEDA Tsutomu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IKEDA Tsutomu', 18)}}的其他基金
Physiological and ecological study on deep-sea zooplankton
深海浮游动物生理生态研究
- 批准号:
14209001 - 财政年份:2002
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Analysis of helical waves arising in some-reaction diffusion systems
部分反应扩散系统中产生的螺旋波的数学分析
- 批准号:
12440032 - 财政年份:2000
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global Bifurcation Structure of Nonlinear Dynamics of Domain Motion
域运动非线性动力学的全局分岔结构
- 批准号:
09640303 - 财政年份:1997
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and Computation of Nonlinear Structures
非线性结构分析与计算
- 批准号:
05302013 - 财政年份:1993
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)














{{item.name}}会员




