Topology of the Universe and Global Structure

宇宙拓扑和全球结构

基本信息

  • 批准号:
    09640341
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

Akio Hosoya :(1) We have studied the classification of compact and homogeneous universe models based on Thurston's theorem and developed the Hamiltonian description of thecuravature and Teichmuller parameters.(2) We applied the renormalization group equation to the Einstein equation with dust matter and studied the renormalization group flow near the fixed point.(3) We calculated the effect of diffraction and interference of gravitational wave by a rotating massive star and found that the image shifts by a distance proportional to the specific angular momentum of the rotating lens.(4) We have developed a theory in which we probe timelike singularities by finite energy wave packet and showed that most of the known naked singularities are actually harmless. Namely, the wave propagation is perfectly well-defined in that spacetime.Hideki Ishihara :(1) The dynamics of domain wall and graviational wave has been studied and it is found that the degrees of freedom of gravitational wave is completely absorbed bt the domain wall in the case of the Nambu-Goto type.(2) We have studied the propagation of light in an inhomogeneous universe model and studies the effect of inhomogeneities to the distance and red-shift.
细谷昭夫:(1)我们研究了基于Thurston定理的紧致宇宙模型和均匀宇宙模型的分类,并发展了曲率和Teichmuller参数的Hamilton描述。(2)将重整化群方程应用于含尘埃物质的爱因斯坦方程,研究了不动点附近的重整化群流。(3)我们计算了旋转的大质量星星对引力波的衍射和干涉效应,发现像移动的距离与旋转透镜的特定角动量成正比。(4)我们发展了一个理论,在这个理论中,我们用有限能量波包探测类时奇点,并证明了大多数已知的裸奇点实际上是无害的。石原秀树:(1)研究了畴壁和引力波的动力学,发现在Nambu-Goto型情况下,引力波的自由度完全被畴壁吸收。(2)研究了光在非均匀宇宙模型中的传播,研究了非均匀性对距离和红移的影响。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hideki Ishihara: "Bubble wall Perturbations Couples with Gravitational Waves" Phys.Rev.D56. 3446-3458 (1997)
Hideki Ishihara:“气泡壁扰动与引力波耦合”Phys.Rev.D56。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akio Hosoya: "Renormalization Group Approach to Einstein Equation in Cosmology" Phys.Rev.D57. D57. 3340-3350 (1998)
Akio Hosoya:“宇宙学中爱因斯坦方程的重正化群方法”Phys.Rev.D57。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masayuki Tanimoto: "Hamiltonian structures for compact homogeneous universes"J.Math.Phys.. 38-12. 6560-6577 (1997)
Masayuki Tanimoto:“致密均匀宇宙的哈密尔顿结构”J.Math.Phys.. 38-12。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akihiro Ishibashi: "Equation of motion for a domain wall coupled to gravitational field"Physical Review D. 60. 124016-1-9 (1999)
Akihiro Ishibashi:“耦合到引力场的畴壁的运动方程”物理评论 D. 60. 124016-1-9 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Ishibashi,A.Hosoya: "Who's afraid of naked singularities ? Probing timelilo singulaities with finito energy"Physical Review. D60. 1-12 (1999)
A.Ishibashi,A.Hosoya:“谁害怕裸奇点?用有限能量探索时间奇点”物理评论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOSOYA Akio其他文献

HOSOYA Akio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOSOYA Akio', 18)}}的其他基金

Black Hole and Quantum Information
黑洞与量子信息
  • 批准号:
    15540258
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cosmological Test of Superstring Theories
超弦理论的宇宙学检验
  • 批准号:
    13135208
  • 财政年份:
    2001
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Global Structure of Spacetime and Quantum Mechanics
时空与量子力学的整体结构
  • 批准号:
    12640257
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topolygy in Quantum Cosmology
量子宇宙学中的拓扑学
  • 批准号:
    05640333
  • 财政年份:
    1993
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Quantum Cosmology and Wormhole
量子宇宙学和虫洞
  • 批准号:
    02640232
  • 财政年份:
    1990
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
  • 批准号:
    2344923
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Reconfiguration of Curved Surfaces for Targeted Wave Propagation
合作研究:用于目标波传播的曲面设计和重构
  • 批准号:
    2247095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Research on the search for mediators of epileptic wave propagation using a mouse model of hereditary epilepsy
利用遗传性癫痫小鼠模型寻找癫痫波传播介质的研究
  • 批准号:
    23K06495
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Mathematical Breakthroughs in Wave Propagation
波传播的数学突破
  • 批准号:
    FL220100072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Australian Laureate Fellowships
Meta-surface techniques for forming and estimating millimeter-wave propagation path
用于形成和估计毫米波传播路径的超表面技术
  • 批准号:
    23K03856
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Design and Reconfiguration of Curved Surfaces for Targeted Wave Propagation
合作研究:用于目标波传播的曲面设计和重构
  • 批准号:
    2247094
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Research related to burning wave propagation in ultra-high-density hydrogen and deuterium plasma
超高密度氢、氘等离子体中燃烧波传播的相关研究
  • 批准号:
    22H00118
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation
职业:了解角动量携带声波传播的基本动力学
  • 批准号:
    2142555
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了