Mathematical Sciences: "Asymptotic & Singular Perturbation Methods for Bifurcation Problems with Applications"
数学科学:“渐近
基本信息
- 批准号:9625843
- 负责人:
- 金额:$ 5.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Erneux 9625843 The investigator studies a series of mathematical problems connected with singular perturbation and bifurcation problems. The project is divided in three distinct parts. A. Slow passage problems: He analyzes the slow passage through resonance in a solid state laser and the slow passage through locking in a semiconductor laser. Both problems are motivated by current experimental work. B. Laser instabilities: Many practical lasers are known to exhibit damped or sustained pulsating oscillations. He investigates a series of specific problems and develop asymptotic methods for their description. C. Biological and medical problems: He works on three different problems, one involving coupled chemical reactions, a model for bursting oscillations, and a class of moving boundary problems modeling the controlled release of pharmaceutical drugs. The common difficulty is the failure of a standard quasi-steady state approximation. The investigator studies a series of practical problems that are difficult, long, or expensive to investigate by using traditional experimental methods. This is the case for many commercially used lasers that exhibit undesired instabilities and for new pharmaceutical devices that allow long releases but are poorly understood physically. Many of these problems are described by mathematical models that are studied numerically. These numerical simulations can be long because the models depend on several parameters or because of numerical difficulties. The main goal of the project is to determine analytical solutions of these problems that may then reduce or guide the numerical simulations. Each specific problem described in this project (lasers - biology) is motivated by current collaborations with experimental groups or with biophysicists.
Erneux 9625843调查者研究了一系列与奇摄动和分支问题相关的数学问题。该项目分为三个截然不同的部分。答:慢通过问题:他分析了固体激光器通过谐振的慢通过和锁定半导体激光器的慢通过。这两个问题都是由目前的实验工作引起的。B.激光不稳定性:众所周知,许多实用激光器表现出衰减或持续的脉动振荡。他研究了一系列具体问题,并发展了描述这些问题的渐近方法。C.生物和医学问题:他研究了三个不同的问题,其中一个涉及耦合化学反应,一个是爆发振荡的模型,另一个是一类模拟药物控制释放的移动边界问题。常见的困难是标准准稳态近似的失败。研究人员研究一系列实际问题,这些问题很难、很长或很昂贵,用传统的实验方法来研究。这是许多商业使用的激光器表现出不希望看到的不稳定性的情况,也是允许长时间释放但物理上了解很少的新制药设备的情况。这些问题中的许多都是通过数值研究的数学模型来描述的。这些数值模拟可能很长,因为模型依赖于几个参数,或者因为数值困难。该项目的主要目标是确定这些问题的解析解,然后可能减少或指导数值模拟。这个项目中描述的每个具体问题(激光-生物学)都是由目前与实验小组或生物物理学家的合作推动的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 5.52万 - 项目类别:
Studentship
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Coarse Geometry of Homogeneous Spaces, Quantization and Asymptotic Homomorphisms
数学科学:齐次空间的粗略几何、量化和渐近同态
- 批准号:
9996079 - 财政年份:1998
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Theory of Difference Equations
数学科学:差分方程的渐近理论
- 批准号:
9706954 - 财政年份:1997
- 资助金额:
$ 5.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topological Index for Proper Actions, Asymptotic Homomorphisms and Equivariant E-Theory
数学科学:适当作用的拓扑索引、渐近同态和等变 E 理论
- 批准号:
9706767 - 财政年份:1997
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Coarse Geometry of Homogeneous Spaces, Quantization and Asymptotic Homomorphisms
数学科学:齐次空间的粗略几何、量化和渐近同态
- 批准号:
9706960 - 财政年份:1997
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Topology, Analysis and Dynamics of Spaces and Foliations
数学科学:空间和叶状结构的渐近拓扑、分析和动力学
- 批准号:
9704768 - 财政年份:1997
- 资助金额:
$ 5.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Asymptotic Properties of Finite Groups and Their Actions
数学科学:有限群的渐近性质及其作用
- 批准号:
9623136 - 财政年份:1996
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Estimates for Boundary- Value Problems in Linear and Nonlinear Continuum Mechanics
数学科学:线性和非线性连续介质力学中边值问题的渐近估计
- 批准号:
9622748 - 财政年份:1996
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Applied Asymptotic Analysis
数学科学:应用渐近分析主题
- 批准号:
9625341 - 财政年份:1996
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Methods for Order Restricted Inference in Survival Analysis
数学科学:生存分析中阶次限制推理的渐近方法
- 批准号:
9504891 - 财政年份:1995
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Behavior of Functionally Dependent Reaction Diffusion Systems
数学科学:函数相关反应扩散系统的渐近行为
- 批准号:
9404207 - 财政年份:1994
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant














{{item.name}}会员




