Studies on differential equations by microlocal analysis

微分方程的微局部分析研究

基本信息

  • 批准号:
    08454023
  • 负责人:
  • 金额:
    $ 5.06万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

First, we investigated the theory of hyperfunctions from a viewpoint of (classical) analysis, and proved fundamental results from this viewpoint. In doing so, we considered the (inverse) Fourier transform S'_<epsilon> of {exp [epsilon <xi>] u (xi) ; u*S'}, and regarded the space of hyperfunctions as the local space of *_<epsilon>0>S'_<epsilon>. Here S denotes the Schwartz space. Furthermore, we established the (classical) analytical theory of pseudodifferential operators and microlocal analysis for hyper-functions, generalizing calculus of pseudodifferential operators and Fourier integral operators in S' to calculus in S'_<epsilon>. In the studies of partial differential operators (and pseudodifferential operators), we could apply the same arguments to S'_<epsilon>, especially the space of hyperfunctions, as used in the category of distributions. And we made it possible to investigate, with unified treatments, partial differential operators in the spaces of distributions, ultradistributions (and Gevrey), and hyperfunctions (and analytic functions). For example, we treated the problems, deriving a priori (energy) estimates. In particular, we obtained results on propagation of analytic singularities and analytic hypoellipticity for analytic pseudodifferential operators from a priori estimates. We also proved that the relation between hypoellipticity and local solvability in the category of hyperfunctions is the same as in the category of distributions. And we obtained several results on local solvability in the space of hyperfunctions from a priori estimates.We studied partial differential operators from a viewpoint of derivation of a priori estimates. And we obtained a priori estimates for various problems. The related problems were studied by the investigators of this project. We believe that the results obtained here are of great use for the studies on partial differential operators.
首先,我们从(经典)分析的角度研究了超函数理论,并从这个角度证明了一些基本结果。在此过程中,我们考虑{exp [<xi>] u (xi)的(反)傅里叶变换S'_<epsilon>;u*S'},并将超函数空间视为*_<epsilon>0 00 >S'_<epsilon>的局部空间。这里S表示Schwartz空间。建立了伪微分算子的解析理论和超函数的微局部分析,将S‘中的伪微分算子和傅里叶积分算子的演算推广到S’_<epsilon>中的演算。在偏微分算子(和伪微分算子)的研究中,我们可以将同样的论点应用到S'_<epsilon>,特别是超函数空间,就像在分布范畴中使用的那样。我们使得用统一的处理方法来研究分布、超分布(和Gevrey)和超函数(和解析函数)空间中的偏微分算子成为可能。例如,我们处理了这些问题,推导了先验(能量)估计。特别地,我们从先验估计中得到了解析伪微分算子的解析奇异性和解析亚椭圆性的传播结果。我们还证明了超函数范畴中的亚椭圆性与局部可解性之间的关系与分布范畴中的关系相同。并从先验估计中得到了超函数空间的局部可解性的几个结果。我们从先验估计的推导角度研究了偏微分算子。我们得到了各种问题的先验估计。本课题的研究人员对相关问题进行了研究。我们认为所得结果对偏微分算子的研究具有重要的指导意义。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
加藤久男: "Everywhere chaotic homeomorphisms on manifolds and k-dimensional Menger monifolds" Topology and its Applications. 72. 1-17 (1996)
Hisao Kato:“流形和 k 维门格尔流形上的无处不在的混沌同胚”拓扑及其应用 72. 1-17 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川村一宏: "Adderdum to "Linear topological classification of certain function spaces on manifolds and CW complexes"" Topology and its Applications. 71. 201-202 (1996)
Kazuhiro Kawamura:“Adderdum 的“流形和 CW 复形上某些函数空间的线性拓扑分类””拓扑及其应用。71. 201-202 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Chigogidze, A.: "Nobeling spaces and psudo-interiors of Menger manifolds" Topology and its Applications. 68. 33-65 (1996)
Chigogidze, A.:“诺贝尔空间和门格尔流形的伪内部”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kawamura, Kazuhiro: "Addendum to "Linear topological classification of function spaces of manifolds and CW complexes"" Topology and its Applications. 71. 201-202 (1996)
Kawamura、Kazuhiro:““流形和 CW 复合体的函数空间的线性拓扑分类”的附录”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
川村 一宏: "Proper n-homotopy equivalences of locally compact polyhedra" Tsukuba J.Math.20. 471-478 (1996)
Kazuhiro Kawamura:“局部紧多面体的正确 n 同伦等价”Tsukuba J.Math.20 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WAKABAYASHI Seiichiro其他文献

WAKABAYASHI Seiichiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WAKABAYASHI Seiichiro', 18)}}的其他基金

Analysis of micro local structure of hyperbolic equations and characterization of hyperbolic equations for which the Cauchy problem is well-posed
双曲方程的微观局部结构分析以及柯西问题适定的双曲方程的表征
  • 批准号:
    20540155
  • 财政年份:
    2008
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Effect of producing a desired fundamental frequency on measures of vocal hyperfunction in transgender speakers
产生所需基频对跨性别说话者声音功能亢进测量的影响
  • 批准号:
    10761717
  • 财政年份:
    2022
  • 资助金额:
    $ 5.06万
  • 项目类别:
Effect of producing a desired fundamental frequency on measures of vocal hyperfunction in transgender speakers
产生所需基频对跨性别说话者声音功能亢进测量的影响
  • 批准号:
    10602986
  • 财政年份:
    2022
  • 资助金额:
    $ 5.06万
  • 项目类别:
Examining the Links Among Motor Symptoms in Vocal Hyperfunction, Auditory Acuity, and Auditory-Motor Function
检查运动症状与发声功能亢进、听觉敏锐度和听觉运动功能之间的联系
  • 批准号:
    10534635
  • 财政年份:
    2022
  • 资助金额:
    $ 5.06万
  • 项目类别:
Impact of abnormal steroid metabolome on cellular senescence, frailty and cognition
类固醇代谢异常对细胞衰老、虚弱和认知的影响
  • 批准号:
    10586100
  • 财政年份:
    2022
  • 资助金额:
    $ 5.06万
  • 项目类别:
Examining the Links Among Motor Symptoms in Vocal Hyperfunction, Auditory Acuity, and Auditory-Motor Function
检查运动症状与发声功能亢进、听觉敏锐度和听觉运动功能之间的联系
  • 批准号:
    10618875
  • 财政年份:
    2022
  • 资助金额:
    $ 5.06万
  • 项目类别:
Impact of abnormal steroid metabolome on cellular senescence, frailty and cognition
类固醇代谢异常对细胞衰老、虚弱和认知的影响
  • 批准号:
    10425564
  • 财政年份:
    2022
  • 资助金额:
    $ 5.06万
  • 项目类别:
Hypothalamic Amenorrhea as a Fertility Status Marker for Cardiovascular Health
下丘脑闭经作为心血管健康的生育状态标志
  • 批准号:
    10289995
  • 财政年份:
    2021
  • 资助金额:
    $ 5.06万
  • 项目类别:
Hypothalamic Amenorrhea as a Fertility Status Marker for Cardiovascular Health
下丘脑闭经作为心血管健康的生育状态标志
  • 批准号:
    10669706
  • 财政年份:
    2021
  • 资助金额:
    $ 5.06万
  • 项目类别:
Numerical analysis of analytic functions based on hyperfunction theory
基于超函数理论的解析函数数值分析
  • 批准号:
    21K03366
  • 财政年份:
    2021
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hypothalamic Amenorrhea as a Fertility Status Marker for Cardiovascular Health
下丘脑闭经作为心血管健康的生育状态标志
  • 批准号:
    10477353
  • 财政年份:
    2021
  • 资助金额:
    $ 5.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了