Research of Lattice Field Theory with rheta-Term by Renormalization Group

重正化群的带变项的格场论研究

基本信息

  • 批准号:
    08640381
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

On the basis of the previous research on U (1) gauge theory, we investigated U (2) lattice gauge theory with rheta-term in 2 dimensions by renormalization group.The reason to choose the group U(2) is that we are interested in the role of non Abelian part. The simplest among such group is U (2), so we began the study on this gauge group. The action is given by non Abelian real part and Abelian imaginary part in 2 dimensions. In contrast to 4 dimensional theory, we can not construct non Abelian imaginary part. This is because the topological term is given by iTrepsilon_<munu>F_<munu> in 2 dimensions, and it gives zero when we choose SU (2) (non Abelian) part.As a bare action, we adopt 1) real action ; defined by couplings, betal_1l_2=beta_<11> (l_1=4q, l_2=2I) * 0, (q means U (1) charge, and I means SU (2) isotopic spin), 2) imaginary action ; standard rheta action (i (rheta/2pi) Trepsilon_<munu>F_<munu>. This is defined by U (1) part.).After renomalization transformations, there appears non Abelian part in imaginary action, it, however, converges to zero after many renomalization group transformations.Phase transition occurs only when rheta=pi and in the irreducible representation which is trivial in SU (2), i.e., for ( (l_1, l_2) = (2,0), namely, the representation with q=1, I=0), but not in non trivial SU (2) representation ( (l_1, l_2) = (1,1), namely, q=1/2, I=1/2). This is due to the SU (2) confinement mechanism which forbids deconfinement transition even at rheta=pi.Real action approaches "heat kernel" type by renormalization group transformations. We are performing also 1) 4 dimensional Z_N theory with rheta-term, which is interesting because it is related with "duality" and "oblique confinement" (Imachi, Liu and Yoneyama), 2) numerical study of CP^<N-1> with N lager than 2 (Imachi, Kanou and Yoneyama).
在前人对U(1)规范理论研究的基础上,我们利用重整化群研究了二维含Rheta项的U(2)格点规范理论,选择U(2)群是因为我们对非阿贝尔部分的作用感兴趣。在这些群中最简单的是U(2),所以我们开始了对这个规范群的研究。作用由二维的非阿贝尔实部和阿贝尔虚部给出。与四维理论相比,我们不能构造非阿贝尔虚部。这是因为拓扑项是由iTrepsilon;lt;munu&gt;F_&lt;munu&gt;给出的,当我们选择SU(2)(非阿贝尔)部分时,它给出了零。作为一个裸作用,我们采用1)实作用;由耦合定义,Betal_1l_2=β_&lt;11&gt;(L_1=4q,L_2=2i)*0,(Q表示U(1)电荷,I表示SU(2)同位素自旋),2)虚作用;标准的瑞塔作用(I(Rheta/2pi)Trepsilon_&lt;munu&gt;F_&lt;munu&gt;这是由U(1)部分定义的。经过重整化变换后,虚作用中出现了非阿贝尔部分,但经过多次重整化群变换后,它收敛到零。只有当Rheta=pi时,相变才发生在SU(2)中平凡的不可约表示中,即(L_1,L_2)=(2,0),即具有q=1,i=0的表示,但在非平凡SU(2)表示((L_1,L_2)=(1,1),即q=1/2,i=1/2)中不会发生相变。这是由于SU(2)禁闭机制阻止了退禁闭相变,即使在Rheta=pi.实作用通过重整化群变换接近“热核”类型.我们还用Rheta项进行了4维Z_N理论,这很有趣,因为它与“对偶”和“斜禁闭”有关(Imachi,Liu和Yoneyama),2)N>2的CP^&lt;N-1&gt的数值研究(Imachi,Kanou和Yoneyama)。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M, Imachi, etal: "Renormalization Group Analysis of U(2) Gauge Theary with θ-Term in 2Dimensions" Prog Theor Phys.97,5. 791-808 (1997)
M,Imachi 等人:“二维 θ 项的 U(2) 规范理论的重正化群分析”Prog Theor Phys.97,5 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Imachi, T.Kakitsuka, N.Tsuzuki and H.Yoneyama: "Renormalization Group Analysis of U (2) Gauge Theory with rheta-term in 2 Dimensions" Prog.Theor.Phys.97. 791-808 (1997)
M.Imachi、T.Kakitsuka、N.Tsuzuki 和 H.Yoneyama:“二维 U (2) 规范理论与 rheta 项的重整化群分析”Prog.Theor.Phys.97。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Imachi, et al: "Renormatization Group Analysis of U (2) Gange Theory with θ Term in 2 Dimensions" Prog. Theor. Phys.97・5. 791-808 (1997)
M.Imachi 等人:“二维 θ 项的 U (2) Gange 理论的重整群分析”Prog. 791-808 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMACHI Masahiro其他文献

IMACHI Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMACHI Masahiro', 18)}}的其他基金

Lattice Field Theory with theta-term and Renormalization Group
具有 theta 项和重正化群的格场论
  • 批准号:
    15540249
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NEW METHOD IN THE STUDY OF RELATIVISTIC BOUND STATES
相对论束缚态研究的新方法
  • 批准号:
    06640404
  • 财政年份:
    1994
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Numerical and analytical investigations of the lattice gauge models at finite temperatures by renormalization group approach
通过重正化群方法对有限温度下的晶格规范模型进行数值和分析研究
  • 批准号:
    60540185
  • 财政年份:
    1985
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Topological term and non-peruturbative fluctuations
拓扑项和非微扰涨落
  • 批准号:
    10640276
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phase Structures of Field Thoeries with Topological Term
拓扑项场论的相结构
  • 批准号:
    07640417
  • 财政年份:
    1995
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了