Numerical and analytical investigations of the lattice gauge models at finite temperatures by renormalization group approach
通过重正化群方法对有限温度下的晶格规范模型进行数值和分析研究
基本信息
- 批准号:60540185
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1985
- 资助国家:日本
- 起止时间:1985 至 1986
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. The lattice gauge theory (LGT) at finite temperatures is investigated in the Migdal renormalization group (RG) approach. Starting from various bare theories defined by various bare coupling constants, we arrive at a unique renormalized theory after sufficient number of Migdal RG transformations. This behavior is seen with a set of infinite number of coupling constants corresponding to the infinite number of irreducible representations. Each action is represented by a point in the infinite dimenensional coupling constant space. RG transformations drive the point to a unique renormalized trajectory independent of the bare action. Migdal RG transformation at T=0 is expressed by isotropic scale transformations. To investigate T<>0 systems, asymmetric scale transformation where the scale in timelike direction is fixed is necessary. We investigated SU(2) and SU(3) LGT's at T<>0. RG flow at T<>0 and internal energy are calculated. We found clear phase transition in the RG flow. The internal energy shows clear deconfinement transition. It rises from zero in low T to a finite value in high T. It shows approximate Stefan-Boltzmann law in high T region. Migdal RG approach including fermion is postponed for future studies.2. Non-perturbative method found in studies of quantum chromo dynamics is applied to quantum gravity. The gravity with higher derivatives is expressed by 0(4) variables. By rewriting them by variables with SU(2)xSU(2) gauge symmetry, it is shown the symmetry is spontaneously broken. The Einstein term arises as a result.3. The Lagrangian including coordinates which are bounded is quantized in the path integral method. According to Faddeev-Senjanovic method, namely by introducing the constraint in <delta> -function form, the quantum Hamiltonian of the system on D-dimensional sphere is obtained.
1.用Migdal重整化群方法研究了有限温度下的格点规范理论。从各种裸耦合常数定义的各种裸理论出发,经过足够多的Migdal RG变换,我们得到了一个唯一的重整化理论。这种行为可以用对应于无限个不可约表示的无限个耦合常数的集合来观察。每一个作用都用无穷维耦合常数空间中的一个点来表示。RG变换将点驱动到独立于裸作用的唯一重整化轨迹。T=0时的Migdal RG变换由各向同性尺度变换表示。为了研究T<>0系统,需要在类时方向上的尺度固定的情况下进行非对称尺度变换。我们研究了T<>0时SU(2)和SU(3)的LGT。计算了T<>0时的RG流和内能。我们发现在RG流中存在明显的相变。内能表现出明显的退禁闭转变。它从低T时的零上升到高T时的有限值。在高T区近似为Stefan-Boltzmann定律。考虑费米子的Migdal RG方法被推迟到未来的研究中。将量子染色体动力学研究中的非微扰方法应用到量子引力中。具有较高导数的重力由0(4)个变量表示。通过用SU(2)xSU(2)规范对称性变量重写它们,证明了规范对称性是自发破缺的。爱因斯坦项作为结果出现。3.用路径积分方法对包含有界坐标的拉格朗日量进行量子化。根据Faddeev-Senjanovic方法,即通过引入函数形式的约束<delta>,得到了D维球上系统的量子哈密顿量。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IMACHI, Masahiro: "Finite Temperature SU(2) Lattice Gauge Theory in Migdal Renormalization Group Approach" Progress of Theoretical Physics. 76. 192-202 (1986)
IMACHI, Masahiro:“Migdal 重正化群方法中的有限温度 SU(2) 晶格规范理论”理论物理进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
IMACHI, Masahiro: "SU(3) Lattice Gauge Theory in Migdal Renormalization Group Approach" Submitted to Progress of Theoretical Physics.
IMACHI, Masahiro:“Migdal 重正化群方法中的 SU(3) 晶格规范理论”已提交到《理论物理进展》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
GHOROKU, Kazuo: "Dynamical Mass Generation in Weyl Gravity" Physics Letters B. 159. 275-278 (1985)
GHOROKU, Kazuo:“外尔引力中的动态质量生成”《物理快报》B. 159. 275-278 (1985)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IMACHI Masahiro其他文献
IMACHI Masahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IMACHI Masahiro', 18)}}的其他基金
Lattice Field Theory with theta-term and Renormalization Group
具有 theta 项和重正化群的格场论
- 批准号:
15540249 - 财政年份:2003
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Lattice Field Theory with rheta-Term by Renormalization Group
重正化群的带变项的格场论研究
- 批准号:
08640381 - 财政年份:1996
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NEW METHOD IN THE STUDY OF RELATIVISTIC BOUND STATES
相对论束缚态研究的新方法
- 批准号:
06640404 - 财政年份:1994
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
- 批准号:
23K04667 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical development and computational implementation of Finite Temperature FAM method for study
有限温度 FAM 研究方法的理论发展和计算实现
- 批准号:
2895616 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Studentship
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Continuing Grant
Characterizing Finite-Temperature Topology Via Quantum Computation
通过量子计算表征有限温度拓扑
- 批准号:
2310656 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
- 批准号:
2310021 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Study of finite-temperature phase transition of QCD by gradient flow
梯度流QCD有限温度相变研究
- 批准号:
22K03593 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite-Temperature Modelling of One, Two, and Many Dopants in the 2D Fermi-Hubbard Model
二维 Fermi-Hubbard 模型中一种、两种和多种掺杂剂的有限温度建模
- 批准号:
567963-2022 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Non-perturbative dynamics and compositeness at finite temperature
有限温度下的非微扰动力学和复合性
- 批准号:
2763883 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Studentship
First-principles calculations of finite temperature transport properties
有限温度传输特性的第一性原理计算
- 批准号:
22K14285 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Finite Temperature Electronic Structure Methods for Predicting Material Phase Diagrams
职业:预测材料相图的有限温度电子结构方法
- 批准号:
2046744 - 财政年份:2021
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant