Mathematical Structure and its Physical Interpritation of 3-dimonsional Quantum Gravity as Topological Field Theory
三维量子引力的数学结构及其拓扑场论的物理解释
基本信息
- 批准号:08640397
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In Gravity theory based on 2+1 dimensional Chern-Simons action, which is topological, scattering amplitudes between 2 particles are given in terms of vacuum expectation values of Wilson loop operators which are extended to include 3-point vertices. Especially, tetrahedron-type operators play an essential role. Unfortunately, explisit expressions of such operators in field theory are not yet known up to now. 2+1 dimensional Chern-Simons theories have, however, intimate connection with 1+1 dimensional rational conformal field theory. Such a relationship makes it possible for us to evaluate vacuum expectation valuses of extened Wilson loop operators exactly. General method to caluculate vacuum expectation values of the tetrahedron-type oerators are almost established by now.One of the most important reason why 2+1 dimensional Chern-Simons theories are exactly soluble is rich mathematical structures contained there. Indeed, vacuum expectation values of standard Wilson loop operators are nothing but knot polynomials and relation with quantum group is also made clear. A conection between such mathematical structures and physics is, however, not yet distinct. Also, how to interprit the mathematical structure interms of field theoretical language is stil open question. On the otherhand, 2+1 dimensional Chern-Simons theories are 2+1 dimensional gravity under the apropriate choice of gauge group. So, it is very important to continue to study relateionships between mathematical structures such as knot polyniomials and quantum group and gravity in order to undeastand 3+ldimensional gravity theories.
在基于2+1维Chern-Simons作用量的引力理论中,粒子间的散射振幅是由Wilson环算子的真空期望值给出的,并将其推广到包含3点顶点。特别是四面体型算子起着至关重要的作用。不幸的是,这种算子在场论中的显式表达式至今还不清楚。2+1维Chern-Simons理论与1+1维有理共形场论有着密切的联系。这种关系使我们有可能准确地估计广义Wilson环算子的真空期望值。计算四面体型算子真空期望值的一般方法已基本建立,2+1维Chern-Simons理论精确可解的一个重要原因是其中包含了丰富的数学结构。实际上,标准Wilson圈算符的真空期望值是纽结多项式,并且与量子群的关系也很清楚。然而,这种数学结构和物理学之间的联系还不明显。如何用场论语言解释数学结构也是一个有待解决的问题。而2+1维Chern-Simons理论在适当选择规范群的情况下是2+1维引力。因此,继续研究纽结多项式、量子群等数学结构与引力的关系,对于理解三维引力理论是十分重要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAYASHI Masahito其他文献
HAYASHI Masahito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAYASHI Masahito', 18)}}的其他基金
Multi-user quantum network
多用户量子网络
- 批准号:
23246071 - 财政年份:2011
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis on multi-terminal quantum network
多端量子网络分析
- 批准号:
20686026 - 财政年份:2008
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
相似海外基金
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Singular topological field theory and classifying spaces of derived manifolds
奇异拓扑场论和导出流形的空间分类
- 批准号:
19K14522 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hyperkähler structures in topological field theory
拓扑场论中的超克勒结构
- 批准号:
1941556 - 财政年份:2017
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
Geometric quantum representations, iterated integrals and applications to topological field theory
几何量子表示、迭代积分及其在拓扑场论中的应用
- 批准号:
16H03931 - 财政年份:2016
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Applications of quantum groups to 4-dimensional topological field theory
量子群在 4 维拓扑场论中的应用
- 批准号:
1974971 - 财政年份:2015
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
CAREER: Subfactors, Tensor Categories, and Local Topological Field Theory
职业:子因子、张量类别和局部拓扑场论
- 批准号:
1454767 - 财政年份:2015
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant
Geometry of moduli spaces and application to topological field theory
模空间的几何及其在拓扑场论中的应用
- 批准号:
24540045 - 财政年份:2012
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic structures in topological field theory
拓扑场论中的代数结构
- 批准号:
0906369 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Representation theory via topological field theory
通过拓扑场论的表示论
- 批准号:
0901114 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Structure in Topological Field Theory
拓扑场论中的结构
- 批准号:
0709448 - 财政年份:2007
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant














{{item.name}}会员




